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The ranges of transmission of the mobiles in a mobile ad hoc network are not uniform in reality. They are
affected by the temperature fluctuation in air, obstruction due to the solid objects, even the humidity difference
in the environment, etc. How the varying range of transmission of the individual active elements affects the
global connectivity in the network may be an important practical question to ask. Here a model of percolation
phenomena, with an additional source of disorder, is introduced for a theoretical understanding of this problem.
As in ordinary percolation, sites of a square lattice are occupied randomly with probability p. Each occupied site
is then assigned a circular disk of random value R for its radius. A bond is defined to be occupied if and only
if the radii R1 and R2 of the disks centered at the ends satisfy a certain predefined condition. In a very general
formulation, one divides the R1-R2 plane into two regions by an arbitrary closed curve. One defines a point within
one region as representing an occupied bond; otherwise it is a vacant bond. The study of three different rules
under this general formulation indicates that the percolation threshold always varies continuously. This threshold
has two limiting values, one is pc(sq), the percolation threshold for the ordinary site percolation on the square
lattice, and the other is unity. The approach of the percolation threshold to its limiting values are characterized
by two exponents. In a special case, all lattice sites are occupied by disks of random radii R ∈ {0,R0} and a
percolation transition is observed with R0 as the control variable, similar to the site occupation probability.
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A simple way to describe the phenomenon of percolation
is to consider a rectangular slab of porous material placed
horizontally and ask, if some liquid is poured on the top
surface, will it appear at the bottom surface? The answer is
yes (no), depending on if the fraction p of the porous volume
is larger (smaller) than a threshold value pc of the porosity
[1–3]. It was Broadbent and Hammersley who introduced
the percolation model by occupying (pore space) randomly
the sites of a regular lattice with probability p and keeping
them vacant (rock matrix) with probability 1 − p while
trying to understand better the mechanism of gas masks [4].
The percolation model can also be described by randomly
occupying the bonds of the lattice. At present, the percolation
model is considered one of the simplest models for introducing
students to the study of order-disorder phenomena [5].

Consider a pair of connected neighboring occupied sites.
A group of such occupied sites forms a cluster if they are
reachable by the nearest neighbor connections. Any two
occupied sites, separated at a certain distance, are connected if
both belong to the same cluster of occupied sites. The correla-
tion between them decreases as their distance of separation
increases and its functional form is exponential when the
distance is large. The length scale that characterizes such a
form is known as the correlation length ξ (p), which diverges
as p approaches a critical value pc, known as the percolation
threshold, which marks the transition point between the
ordered and disordered phases. The best value of pc(sq) for
site percolation on the square lattice is 0.592 746 050 792 10(2)
[6] and 1/2 for the bond percolation [7]. In both cases, the
nature of transition is continuous and they belong to the same
universality class.

Over the years a number of variants of the percolation model
have been studied [8]. In the continuum percolation [9,10],
one finds the minimal density of equal-size overlapping lilies,
floating at random positions on the water surface of a pond,
such that an ant will be able to cross the pond walking on the

lilies [2]. In a mobile ad hoc network (MANET) each node
represents a mobile phone with a fixed range of transmission
that is capable of receiving as well as transmitting signals [11].
Depending on the value of the range, there exists a critical
density of lilies or phones where the long-range correlation
appears [1].

Recently, it was suggested that a discontinuous transition
may be possible in a model of percolation and termed
it explosive percolation [12–15]. Subsequently, it has been
shown that, though such models show very sharp changes in
their order parameters for finite-size systems and therefore
appear like discontinuous transitions, they indeed exhibit a
continuous transition in the asymptotic limit of very large
system sizes [16–19].

Here we introduce a very general formulation of the
percolation model. Sites of a square lattice of size L × L are
occupied randomly using circular disks of random radii values
R. The transmission range of a mobile phone in a MANET
may be compared to the radius R of a disk. This range is
affected by the temperature fluctuation in air, obstruction due
to the solid objects, humidity difference in the environment,
etc., and therefore, assuming random values for the radii of the
disks is a better description than using the identical disks. In
this prescription, a bond is defined to be occupied if and only
if the radii R1 and R2 of disks centered at the ends satisfy a
certain predefined rule; otherwise it is vacant. Most generally,
the R1-R2 plane is divided into two different regions by an
arbitrary closed curve. Any point within one region represents
an occupied bond; otherwise it is a vacant one. The percolation
thresholds vary continuously bewteen pc(sq) and unity.

The radii R of the disks are drawn from a uniform
rectangular distribution P (R) of half width W and the center
at R = 1/2 + S, where S denotes the shift parameter. For
the simulation, a random number r ∈ {0,1} from a uniform
distribution is assigned at each lattice site to calculate R =
1/2 + S + (2r − 1)W .
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FIG. 1. On the R1-R2 plane, for a specific set of values of W =
1/4 and S, the regions corresponding to the occupied bonds (gray)
and unoccupied bonds (white) are indicated. For the sum rule (a)
S = 0 and (b) S = 1/8 and for the product rule (c) S = 0 and (d)
S = 1/8.

The sum rule. A bond is occupied if and only if

R1 + R2 � 1. (1)

For a given pair of S and W , the points in the R1-R2 plane,
representing the occupied and vacant bonds, lie within a square
box (Fig. 1). In Figs. 1(a) and 1(b) we exhibit two specific cases
with S = 0 and 1/8, respectively, where W = 1/4. A typical
picture of a percolating configuration for the sum rule is shown
in Fig. 2.

To generate a single percolation configuration with the
occupation probability p, we start from an empty square lattice
of size L and then drop pL2 disks, one by one, onto the
lattice sites. At every step, an arbitrary site i is randomly
selected and if it is vacant, a disk with a randomly selected
radius Ri is placed at this site. Once pL2 sites are occupied,
all four neighboring bonds of every occupied site are then
tested for possible occupation. The number of occupied bonds
an occupied site may have varies from 0 to 4 even if all
neighboring sites are occupied. In this way, all bonds are
assigned their occupied or vacant status. A cluster is a set
of occupied sites interlinked by occupied bonds. A random
configuration α has a number of clusters of different shapes
and sizes. The size s of a cluster is the number of sites in
the cluster and the size of the largest cluster is denoted by
sα

max(p,L). The order parameter �(p,L) is defined by the
configuration averaged fractional size of the largest cluster,
i.e., �(p,L) = 〈sα

max(p,L)〉/L2.
By definition, as p is gradually increased, the largest cluster

grows monotonically. Around the transition point, it makes
several jumps in size when it merges with other clusters.
For an arbitrary configuration, the largest cluster executes the

FIG. 2. Percolating configuration of 501 circular disks drawn
using the sum rule (with periodic boundary conditions) for L = 24,
W = 0.15, S = 0, and p ≈ 0.87. The largest and the second largest
clusters are of sizes 208 (red) and 90 (green), respectively. Because
of the blue disk, these two clusters merge and the maximal jump in
the order parameter takes place. Disks at all other occupied sites are
in cyan.

maximal jump �msα
max(p,L) at p = pα

c , when it merges with
the maximal of the second largest cluster [20]. An average
over many such configurations is considered as the percolation
threshold pc(L) = 〈pα

c 〉 for the system of size L.
For the percolation model, it is well known that the

correlation length diverges like ξ (p) ∝ |pc − p|−ν as p → pc

for the infinite system, where ν is the correlation length
exponent and its value is 4/3 in two dimensions [1,21].
However, for a finite-size system ξ may be at most L and
that is attained at p = pc(L). Therefore, one gets pc(L) =
pc − AL−1/ν and the asymptotic value of pc is obtained by
extrapolating pc(L) against L−1/ν . It is also known that right
at the percolation threshold the largest cluster is a fractal object
and its size grows as 〈sα

max(pc,L)〉 ∼ Ldf , where df is its fractal
dimension in two dimensions [22]. Similarly, the maximal of
the second largest cluster is also a fractal with the same fractal
dimension df . As a consequence, the amount of the maximal
jump in the order parameter decreases with increasing L as
〈�msα

max(pc,L)〉/L2 ∼ Ldf −2.
For S = 0 and W = 0, the bond between any pair of

neighboring occupied sites is occupied. Therefore, pc(S =
0,W = 0) = pc(sq). When W > 0, though only half of the
disks have radii larger than 1/2, a global connectivity can still
be achieved. The small size disks certainly contribute to the
density of occupied sites but may or may not take part in
the bond density. Consequently, it takes the higher density of
occupied sites to attain the global connectivity. The growth
of the largest cluster is therefore retarded, i.e., pc(S = 0,W >

0) > pc(sq). Again, because of the small disks, in the limit of
p → 1, the size sα

max(p,L)/L2 converges to a value that is well
below unity and depends on the parameters S and W .
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FIG. 3. For the sum rule, the order parameter �(p,L) is plotted
against the probability p for L = 512 with red for S = 0.03 and
W = 0.04, 0.045, 0.05; blue for S = 0.02 and W = 0.04, 0.05, 0.06;
magenta for S = 0.01 and W = 0.04, 0.2/3, 0.15; and black for S = 0
and W = 0.04; the curves are arranged from left to right.

The pc(L) values are extrapolated against L−1/ν with
different trial values of ν. The best fit corresponds to ν =
1/0.7502 ≈ 1.333(5) and pc(S = 0,W > 0) ≈ 0.9191(2).
This is independent of W since the bond occupation probability
is 1/2 for all values of W > 0. In addition, the average
fractional size of the largest cluster has been found to decay
like L−0.105 and gives an estimate of df = 1.895(5) compared
to the exact value of df = 91/48 [1]. The average value of
the maximal jump in the largest cluster varies as L−0.104 and
equating the power to df − 2 one gets df = 1.896(5).

Figure 3 exhibits the variation of the order parameter
�(p,L) against the site occupation probability p. For S = 0,
the curve is independent of W . Further, for a fixed value of
S > 0, the curve shifts to higher values of p as W increases,
whereas for a fixed value of W the curve shifts towards the
smaller values of p as S increases. Numerically it appears that
pc(L) depends only on ratio of S and W .

For S > 0, in the limit of L → ∞, first the extrapolated
values pc(S,W ) are calculated. Then a scaling analysis is done
where we plot pc(S,W ) − pc(S) against W/S − 1 in Fig. 4
and obtain a good data collapse. Tuning the values of pc(S),
the curves for different S fit to a straight line as W/S − 1 → 0,
indicating a scaling form

pc(S,W ) − pc(S) ∼ (W/S − 1)ζS , (2)

where we estimated ζS = 1.95(5). The best tuned values of
pc(S) are consistent with pc(sq).

On the other hand, when S is negative, the vacant area in
Fig. 1(a) increases, the occupied area decreases, and therefore
the percolation threshold increases. For a specific threshold
value of S = Sc = −0.0201(5) the pc(Sc) = 1 for W = 1/4.
It has been observed that pc(Sc,W ) − pc(S,W ) ∼ (S − Sc)ηS

with ηS ≈ 1.003(5). For other W values Sc(W ) varies, but
Sc(W )/W remains constant.

The product rule. Here the condition for occupation of a
bond is

R1R2 � 1/4. (3)

Figures 1(c) and 1(d) represent occupied and vacant bonds
determined by the product rule for S = 0 and 1/8, respectively,
with W = 1/4.
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FIG. 4. For the sum rule, the scaling plot of pc(S,W ) − pc(S)
against W/S − 1 is shown for S = 0.1 (green), 0.01 (magenta), and
0.001 (black). The values of pc(S) required to make the curves straight
in the W/S → 1 limit are 0.592 767 5, 0.592 768 4, and 0.592 766 2,
respectively, which are very close to pc(sq). The slopes of the linear
portions are 1.96, 1.93, and 1.94 respectively, giving ζS = 1.95(5).

It can be seen from the Fig. 1(c) that for S = 0, the
probability of an occupied bond (the shaded area) for the
product rule decreases with increasing W and for this reason
the order parameter depends explicitly on the value of the width
W and the critical percolation probability increases with W .
On the other hand, for a general value of S > 0, the �(p,L)
plots are quite similar to those of the sum rule, but pc(L) values
are slightly larger. First, the asymptotic values of the critical
percolation probabilities pc(S,W ) for S = 0 and W → 0 are
again found to be 0.9191(2). For S > 0, again a scaling plot
of pc(S,W ) − pc(S) against W/S − 1 gives a very nice data
collapse and we find ζP ≈ 1.93(10). Here also the shift S

may take negative values, so the percolation threshold would
increase to unity, i.e., pc(Sc,W ) = 1 for Sc = −0.0117(5) for
W = 1/4. The approach to this limit is again characterized by
ηP ≈ 1.

The circular rule. Here a circular region, centered around
the point (1/2,1/2) of radius � in the R1-R2 plane, is selected.
The radii R of the disks are again distributed by P (R), but only
S = 0 and W = 1/2 are used. The region inside the circle
represents the occupied bonds, whereas the outside region
represents the vacant bonds.

Evidently, the critical percolation threshold pc(�,L) de-
pends on the value of �. It has been observed that if the
size of the circular region is too small, the size of the
largest cluster becomes minuscule even when the occupation
probability p = 1. Consequently, one defines a threshold value
�c such that a global percolation transition can occur only
when � > �c. Clearly, the critical percolation probability
at �c is denoted by pc(�c) = 1. As before, pc(�c) − pc(�)
varies as (� − �c)ηC . The best-fit value of �c is found to be
0.3488(5) with ηC ≈ 0.96(5). Also, the other limit corresponds
to �L = 1/

√
2 when all points in the R1-R2 plane correspond

to the occupied bonds. In this case pc(�) − pc(sq) varies as
(�L − �)ζC and we estimate ζC ≈ 1.95(5).

Our model is distinctly different from the random site-
bond percolation [23,24]. In this model, sites and bonds of the
same lattice are occupied independently. A connecting path is
therefore a sequence of alternate occupied sites and bonds and
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FIG. 5. Critical values of the site pc and the bond qc occupation
probabilities are plotted for the site-bond percolation [24] (black),
sum rule (red), product rule (blue), and circular rule (green) (in the
sequence from top to bottom). The solid lines are the best-fit forms
given in Eq. (4).

the global connectivity is determined by the appearance of such
paths across the system. In comparison, in our model when two
neighboring sites are occupied, the occupied or vacant status
of the bond between them is immediately determined, subject
to the fulfillment of certain condition.

This difference shows up in the following example. In
Fig. 1(a), the gray area represents the bond occupation prob-
ability q = 1/2, where the percolation threshold is estimated
to be pc ≈ 0.9191. This is clearly different from the random
site-bond percolation on square lattice, which gives pc = 1
when qc is set at 1/2 [24].

In random site percolation, the bond density grows with
the site density as q(p) = p2. In comparison, in our case, this
form is modulated by a function as q(p) = H(S,W )p2, where,
for the sum rule,

H(S,W ) = 1/2 + S/W − S2/(2W 2) for S > 0,

H(S,W ) = 1/2 − S/W + S2/(2W 2) for S < 0.

For the product rule, there exists a threshold value SW such
that, for S � SW ,

4W 2H(S,W )

= (S + W )2 + (S + W ) − ln(1 + 2S + 2W )/2,

4W 2H(S,W )

= 4W 2 − (S − W )2 − (S − W ) + ln(1 + 2S − 2W )/2

for S � SW , where SW = [(1 + 4W 2)1/2 − 1]/2. Our nu-
merical estimations are very much consistent with these
expressions.

In Fig. 5 we show the phase diagram, similar to the site-bond
percolation. The phase space in this diagram is divided into
two regions, namely, the percolating and the nonpercolating
regions. Therefore, every point on the boundary between
the two regions signifies a critical point, represented by
[pc,qc(pc)]. The data for the random site-bond percolation
have been collected from [24]. Similar phase boundaries for
the sum, product, and circular rules have also been shown for
comparison. All four phase boundaries are completely distinct
in general, but they meet only at the point [pc(sq),1]. For
the random site-bond percolation, the functional form of the
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FIG. 6. For the system sizes L = 256 (black), 512 (red), and
1024 (blue) with R0c = 0.925, 1/ν = 0.75, and β/ν = 0.11. (a) Plot
of the percolation probability 
(R0,L) against R0. The inset shows
a scaling by (R0 − R0c)L1/ν exhibiting the data collapse. (b) Plot of
the order parameter �(R0,L) against R0. The inset shows a scaling
by �(R0,L))Lβ/ν against (R0 − R0c)L1/ν exhibiting an excellent data
collapse.

critical curve is qc(pc) = B/(A + pc) [24] and is represented
by the black solid line. Here we have tried a modified functional
form to fit our data as

qc(pc) = B/
(
A + pθ

c

)
(4)

and we have observed that θ = 2.41, 2.70, and 2.81 for the
sum, product, and circular rules, respectively. For the sum and
product rules W = 1/4 is used.

A very interesting special case of our model is the situation
when all sites of the lattice are occupied (p = 1) by disks
of uniformly distributed radii R ∈ {0,R0}. A related model in
continuum percolation considers disks of randomly selected
radii [25,26]. The set of occupied bonds is then determined by
the sum rule using the periodic boundary condition along the
horizontal direction and the open boundary condition along
the vertical direction. For any value of R0 < 1/2, none of the
bonds become occupied. When R0 is further increased, the
size of the largest cluster exhibits a sharp increase, similar to
the ordinary percolation, for a critical value R0c. We defined

(R0,L) as the spanning probability from the top to the
bottom of the lattice. We also calculated the order parameter
�(R0,L) = 〈sα

max(R0,L)〉/L2.
In Fig. 6(a) we plot 
(R0,L) against R0 for three different

system sizes that meet at approximately same value of
R0 = R0c = 0.925(5). A finite-size scaling of 
(R0,L) plotted
against the scaled variable (R0 − R0c)L1/ν with 1/ν = 0.75
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works very well [Fig. 6(a) inset], implying


(R0,L) ∼ F[(R0 − R0c)L1/ν]. (5)

In Fig. 6(b) we plot �(R0,L) against R0 and the scaling form
[Fig. 6(b) inset]

�(R0,L)Lβ/ν ∼ G[(R0 − R0c)L1/ν] (6)

works excellently. Compared with the ordinary percolation,
we recognize ν as the correlation length exponent and β

as the order parameter exponent. Our best collapse of the
data corresponds to 1/ν = 0.75 and β/ν = 0.110(5). These
values are to be compared with the exact values of the two-
dimensional percolation exponents ν = 4/3 and β = 5/36,
i.e., β/ν = 5/48 ≈ 0.1042 [27,28]. The entire calculation has
been repeated using the product rule and the results are
found to be very similar to those of the sum rule except for
R0c = 0.978(5) and β/ν ≈ 0.104(5).

To summarize, in the statistical physics framework of the
percolation phenomena we have attempted to study the global
connectivity problem in a mobile ad hoc network, where all
active elements are not of uniform transmitting capacities.
Transmission ranges of different mobile elements may be
different. We asked the question of whether the network is still

globally connected. Our theoretical study in this paper answers
this question in the affirmative, which is also interesting
from the point of view of critical phenomena of disordered
systems.

A very general percolation problem has been formulated
with two different types of randomness. A bond is occupied if
the pair of neighboring disks of randomly distributed radii
R1 and R2 fulfills a certain condition. Such a condition
is most generally described by dividing the R1-R2 plane
into two regions by a closed curve of arbitrary shape: One
region represents the connected bonds, whereas the other
region represents the vacant bonds. The percolation threshold
varies within pc(sq) � pc � 1. The nature of the percolation
transition is continuous, but the approach of the percolation
threshold to its limiting values is described in terms of the
exponents ζ and η. Moreover, our analysis even on a fully
occupied lattice reveals that a percolation transition can occur
where the control parameter is the maximal radius R0 of
the disks. The set of critical exponents exhibits excellent
agreement with those of the ordinary percolation, implying
that both may belong to the same universality class.

We thankfully acknowledge D. Dhar and R. M. Ziff for
critical review of the manuscript and valuable comments.
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