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Fiber bundle model with highly disordered breaking thresholds
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We present a study of the fiber bundle model using equal load-sharing dynamics where the breaking thresholds
of the fibers are drawn randomly from a power-law distribution of the form p(b) ∼ b−1 in the range 10−β to
10β . Tuning the value of β continuously over a wide range, the critical behavior of the fiber bundle has been
studied both analytically as well as numerically. Our results are: (i) The critical load σc(β,N ) for the bundle of
size N approaches its asymptotic value σc(β) as σc(β,N ) = σc(β) + AN−1/ν(β), where σc(β) has been obtained
analytically as σc(β) = 10β/(2βe ln 10) for β � βu = 1/(2 ln 10), and for β < βu the weakest fiber failure leads
to the catastrophic breakdown of the entire fiber bundle, similar to brittle materials, leading to σc(β) = 10−β ;
(ii) the fraction of broken fibers right before the complete breakdown of the bundle has the form 1 − 1/(2β ln 10);
(iii) the distribution D(�) of the avalanches of size � follows a power-law D(�) ∼ �−ξ with ξ = 5/2 for
� � �c(β) and ξ = 3/2 for � � �c(β), where the crossover avalanche size �c(β) = 2/(1 − e10−2β )2.
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I. INTRODUCTION

Natural disasters such as landslide, mine collapse, and
earthquake cause great losses in human lives and property. It
is therefore primarily important to understand the underlying
mechanisms of the failure processes so that the losses can be
minimized by providing a precursor. Similarly, for engineers
the strength of material is a major quantity in order to make
huge constructions like bridges, buildings, etc. Due to these
standing requirements, during the past two decades, much
scientific effort has been invested in exploring the microscopic
mechanism and rupture process of disordered materials. It
has been revealed that the disorder plays a crucial role in
determining the strength of material and also in the fracturing
process [1–5].

Models of materials in the form of a bundle consisting of a
large number of parallel massless elastic fibers are well known
to be simple examples of critical systems exhibiting nontrivial
breakdown properties [1–5]. These systems are called the fiber
bundle models (FBM) where individual fibers have randomly
distributed breaking thresholds. Typically, on increasing the
externally applied load σ per fiber, the entire fiber bundle
fails at a critical load σc per fiber. It is also known that for
σ < σc, the larger the external load is, the more extensive is
the response of the system in terms of the number of fiber
failures. This number diverges as σ → σc from below and for
σ beyond σc all fibers eventually fail with certainty. Therefore,
σc is looked upon as the transition point from a local to the
global failure of the bundle [6].

In the fiber bundle model, a set of N parallel fibers
is clamped at one end and an external load is applied at
the other end [7,8]. Every fiber i has its own breaking
threshold bi . If the tensile stress acting through it exceeds
bi then it breaks. Random numbers {bi} are drawn from a
probability distribution p(b) and they are assigned as the
breaking thresholds of the individual fibers whose cumulative
distribution is P (b) = ∫ b

0 p(z)dz.
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In many FBMs, stress is treated as a conserved quantity.
During the failure of an individual fiber the stress is released
and it gets distributed among the remaining intact fibers.
Depending on how the released stress is distributed among
the intact fibers there exists various models in the literature.
Among these FBMs the equal load sharing (ELS) model is the
most well known [8–10]. Here the released stress is distributed
equally among all the remaining intact fibers. Most of the
results of this model have been calculated analytically and
also this model is computationally easier to tackle. On the
other hand, in the local load-sharing (LLS) model, the released
stress is distributed equally only to the nearest surviving
neighbors [11,12]. In the LLS model, most of the results
have been obtained numerically. A fiber is strained when
some amount of stress acts through it. For ELS, the clamps
at two ends of the bundle may be treated as infinitely stiff and
therefore under a certain applied load, all fibers are strained
by equal amounts and consequently the magnitudes of the
stresses acting through the intact fibers are also equal. On
the other hand, if the clamps are elastic, different fibers are
strained differently and their stress values are also different as
is the situation in the LLS model. A third model, intermediate
between ELS and LLS, has also been considered in the
following way. In this model the released stress is distributed
nonuniformly and the share amount received by an intact fiber
depends inversely to some power of the distance of separation
from the broken fiber [13]. A number of other processes have
been studied in the framework of fiber bundle models. For
example, how the damage evolves due to an environmentally
assisted aging process in a fiber bundle model has been studied
in Ref. [14]. In this paper, we study the breakdown properties
of the fiber bundles with ELS dynamics.

Let σ be the uniform applied load per fiber initially when
all fibers are intact. The total amount of external load is then
F = Nσ . This externally applied load gets distributed within
the bundle in a series of T successive time steps. Let us denote
xt as the stress per intact fiber after t th relaxation step. Since
more and more fibers break, the stresses acting through the
remaining intact fibers increase. When σ is the applied load per
fiber, all fibers with bi < σ break. This stress is now distributed
to N [1 − P (σ )] intact fibers on the average. After the first
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step if x1 is the stress per fiber then F = Nx1[1 − P (σ )].
Consideration of the same mechanism in successive steps one
can write

F = Nx1[1 − P (σ )] =Nx2[1 − P (x1)] =Nx3[1 − P (x2)].

(1)

This process terminates after T steps when the amount of stress
released is not sufficient to create further failure of fibers.

If x is the applied load per intact fiber in the stable state,
then one can write the external load F (x) as a function of x

[6,15], which is F (x) = Nx[1 − P (x)]. For a specific value of
x = xc,F (x) is maximum, which suggests the condition 1 −
P (xc) − xcp(xc) = 0. For example, for a uniform distribution
of breaking thresholds one gets σc = Fc/N = 1/4 [15].

The failure properties of materials are highly dependent
on the extent of disorder inherent in them. In the FBMs, this
disorder appears in the breaking thresholds of the individual
fibers. In this regard, the power-law distribution of breaking
thresholds is an extreme case of heterogeneous disorder, where
a large number of fibers have very small breaking thresholds,
their numbers decreases as breaking thresholds are increased,
leading to few fibers with large breaking thresholds. It is
already known in the literature that the probability of getting
a warning of imminent breakdown of the system is higher
when the material is more heterogeneous [16]. Such cases
of extremely heterogeneous disorder has not been very well
studied in the literature of fiber bundle model. Another form
of strong heterogeneity has been studied where a fraction of
fibers are completely unbreakable and the breaking thresholds
of the rest are drawn from some distribution [17,18]. In this
paper, we therefore address the problem of FBMs with highly
heterogeneous power-law distributed breaking thresholds of
individual fibers. As a first step, we study the simpler problem
of ELS dynamics in this model, study of the LLS version will
be taken up in a future publication.

FBMs have a wide variety of applications. It is a versatile
tool to understand conceptually the underlying microscopic
mechanism of fatigue [19], failure of composite materials [20],
landslides [21], etc. Moreover, the ELS version of the FBM
studied here may be used to study the traffic jams in roads [22].
The traffic-flow capacities of the roads can be mapped to the
breaking thresholds of individual fibers. The highly disordered
flow rates may occur in a traffic network with few highways
and a large number of narrow roads connecting the highways.

In Sec. II we describe our study of the fiber bundle
model with power-law distributed breaking thresholds. We also
describe different analytically obtained results characterizing
this bundle and their numerical supports. In Sec. III the
statistics of avalanche size distribution have been described.
We summarize in Sec. IV.

II. HIGHLY DISORDERED FIBER BUNDLES

In this paper we report the results of our study of the
breakdown properties of a fiber bundle where the breaking
thresholds of the individual fibers are power-law distributed.
As in other FBMs, the only source of disorder in our model is
the random distribution of breaking thresholds. Therefore, the
individual breaking thresholds bi are drawn from a probability

distribution p(b) ∼ b−γ with γ = 1. Initially, N uniformly
distributed random numbers qi are drawn within −1 < qi < 1
and the breaking threshold bi = 10βqi for the ith fiber is
assigned. Consequently, the probability distribution takes the
form p(b) ∼ b−1 within the range 10−β to 10β [16].

Here, we use the same formulation described in Sec. I to
obtain the breaking strength of the bundle σc as a function
of the cutoff parameter β when the breaking thresholds {bi}
are power-law distributed. The constant of proportionality can
be evaluated from the normalization condition, which gives
the functional form p(b) = b−1/(2β ln 10). As a result, the
cumulative probability distribution is given by

P (b) =
∫ b

10−β

p(z)dz = ln b/(2β ln 10) + 1/2. (2)

In this case we obtain the expression of F (x) as

F (x) = Nx[1/2 − ln x/(2β ln 10)]. (3)

Clearly the function F (x) has a maximum at x = xc, for which
dF (x)/dx = 0. This yields xc = 10β/e and the total critical
applied load is Fc ≡ F (xc) = N10β/(2βe ln 10). Thus, the
critical initial applied load per fiber is given by

σc(β) = Fc/N = 10β/(2βe ln 10). (4)

Let b∗ denote the minimum of the breaking thresholds. Since
the definition of xc signifies that a bundle fails completely at
this point, then the condition b∗ = xc, i.e., 10−β = 10β/e, fixes
the upper bound of β denoted as βu = 1/(2 ln 10) for which the
weakest fiber failure leads to the complete breakdown of the
bundle. Thus, we have the complete expression for σc(β):

σc(β) =
{

10β/(2e ln 10β) for β � βu

10−β for β � βu

. (5)

The above expression for the average critical applied load per
fiber σc(β) for a given value of cutoff parameter β is valid only
for infinitely large bundles, i.e., N → ∞.

The width of the distribution of breaking thresholds
increases with β and the critical threshold σc(β) varies
accordingly. For β = 0, all fibers have the same breaking
thresholds equal to unity, and therefore σc(0) = 1. When β

is small, the minimum breaking threshold is high enough,
and very close to unity. When the external stress per fiber is
raised to reach the minimum breaking threshold, it breaks. The
released stress is distributed among the remaining fibers and
is sufficient to break all other fibers. This mechanism, when
failure of the weakest fiber ensures the global failure of the
entire bundle is analogous to the brittle fracture. This situation
continues till β reaches βu, and therefore σc(β) decreases as
the strength of the weakest fiber, i.e., 10−β . When β increases
further, gradually fibers of high breaking thresholds appear and
they take over the control. Consequently, σc(β) must increase
with β for large β with a minimum at β = βm. The value of
βm is obtained using the condition dσc(β)/dβ = 0 in Eq. (5)
at βm = 1/(ln 10), which is twice the value of βu.

Numerically, σc(β) is obtained in the following way. For
a given value of β we first calculate the critical load per
fiber σα

c (β,N ) for a particular fiber bundle α having N

fibers with a given set of breaking thresholds {bi}. This
calculation is repeated over a large number of uncorrelated
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FIG. 1. The initial external load σc(β) per fiber given in Eq. (5)
(solid line) matches excellently with its numerical estimates (open
circles).

bundles α and their critical loads are averaged to obtain
σc(β,N ) = 〈σα

c (β,N )〉. The entire calculation is then repeated
for different values of N .

To obtain σα
c (β,N ), the breaking thresholds are arranged in

increasing order (bα
(1) < bα

(2) < bα
(3) < · · · < bα

(N)). The bundle
will support the initially applied load per fiber (σ ) if σ < bα

(1) or
σN/(N − 1) < bα

(2) or σN/(N − 2) < bα
(3) or . . . σN < bα

(N).
If all these inequalities fail to satisfy then the bundle will no
longer support the load, it will break apart. Now if σ is such
that it is sufficient to break n fibers, then at this stage the bundle
will support the load if σN/(N − n) < bα

(n+1), i.e.,

σ < [(N − n)/N ]bα
(n+1). (6)

The term in the parenthesis of Eq. (6) decreases with n and
bα

(n+1) is an increasing function of n as thresholds are arranged
in increasing order. So, the function at the right-hand side
of Eq. (6) has a maximum at some n and if the external
load σ is raised at this maximum value, the bundle will
break immediately. So the maximum of [(N − n)/N ]bα

(n+1)
determines the critical load per fiber for the bundle α.
Therefore [23],

σα
c (β,N ) = max

{
bα

(1),
N − 1

N
bα

(2),
N − 2

N
bα

(3), . . . ,
1

N
bα

(N)

}
.

(7)

We now assume that the average value of the critical load
per fiber σc(β,N ) for a given value of β and for the bundle
of size N converges to a specific value σc(β) as N → ∞,
according to the following form

σc(β,N ) − σc(β) = AN−1/ν(β), (8)

where ν(β) is a critical exponent for the cutoff parameter β. We
have plotted σc(β,N ) against N−1/ν(β) for N = 218 to 224, N

being increased by a factor of 4 at each stage. For a particular
value of β we have used different trial values of ν(β) so that
for a specific value of ν(β) the plot fits (by least square fit)
to the best straight line. Using this best value of ν(β) and
on extrapolation to N → ∞ we obtained σc(β). In Fig. 1 we
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FIG. 2. Variation of the critical load σc(β,N ) on the system size
N for β = 0.225 has been exhibited. Plot of σc(β,N ) − σc(β) vs.
N−0.624 with σc(β) = 0.596 shows a nice straight line that passes
very close to the origin.

have exhibited an excellent matching of the analytical and the
numerical values of σc(β) for the range 0 < β � 2.

We now investigate the dependence of the finite-size
correction exponent ν(β) on the cutoff parameter β. We recall
that in the case of a uniform breaking threshold distribution,
the plot of σc(N ) − σc as a function of N−1/ν gives an
excellent straight line with σc = 1/4 and ν = 3/2 [24–27].
Similarly, for our model of highly disordered FBM, the plot of
σc(β,N ) − σc(β) against N−1/ν(β) is carried out for different
values of β. For example, we obtain the best possible value of
ν(β) to be 1.603 for β = 0.225 shown in Fig. 2. In this way
the critical exponent ν(β) is calculated for different β and its
variation is shown in Fig. 3(a) using N = 210 to 216, 214 to
220, and 218 to 224. The value of ν(β) first increases, attains
a maximum value ≈1.63, then decreases and saturates to 1.5
with further increment of β. The same data in Fig. 3(a) when
plotted against (β − βu)N0.33 shows a good collapse as shown
in Fig. 3(b). Thus, we conclude that the curve for ν(β) retains
its nature for large bundle sizes.

Next we calculate the fraction of broken fibers fb(β) just
before complete breakdown of the bundle as a function of
the cutoff parameter β. Since at xc the fiber bundle fails
completely, so the quantity fb(β) is calculated as

fb(β) =
∫ xc

10−β

p(x)dx = 1 − 1/(2β ln 10). (9)

As the fraction of broken fibers fb(β) is a positive quantity,
thus the condition 1 − 1/(2β ln 10) > 0 again reproduces the
result that for β < 1/(2 ln 10) the weakest element failure leads
to the catastrophic breakdown of the bundle.

Numerically, fb(β), for a given value of β, is calculated in
the same way as described previously in the case of σc(β). The
external load is increased quasistatically until the bundle fails.
Just before complete breakdown of the bundle, the fraction
of broken fibers is calculated for a particular N and averaged
over large number of samples to obtain fb(β,N ). Then this
procedure is repeated for six values of N = 216,218, . . . ,226

and an extrapolation on fb(β,N ) as N → ∞ yields fb(β). In

032103-3



CHANDREYEE ROY, SUMANTA KUNDU, AND S. S. MANNA PHYSICAL REVIEW E 91, 032103 (2015)

0.18 0.2 0.22 0.24 0.26
β

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
ν(

β,
N
)

-2 -1 0 1 2

(β − βu)N
0.33

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

ν(
β,
N
)

(a)

(b)

FIG. 3. (Color online) (a) Plot of ν(β,N ) vs. β for systems of
different sizes. The value of ν(β,N ) calculated using the four bundle
sizes from N = 210 to 216 (black), 214 to 220 (blue), and 218 to 224

(red); N is increased from left to right. (b) A collapse of the data of
the same three system sizes works excellent when the β axis has been
suitably scaled.

Fig. 4 the numerically obtained results are compared with the
analytical one, indicating a good agreement.

III. AVALANCHE-SIZE DISTRIBUTION

In a stable fiber bundle, the stress acting through every
intact fiber is less than its breaking threshold. Now, if the
externally applied load is suitably raised so that it becomes
equal to the breaking threshold of the weakest fiber, then this
fiber breaks. This triggers a cascade of fiber failures, which
finally ends when the bundle attains a new stable state. The
total number � of fibers that fail in this event is called the
avalanche size. Starting from a completely intact fiber bundle
the global failure of the entire bundle may be attained by raising
the external load in such a quasistatic process, causing a series
of avalanches. The probability distribution D(�) is regarded
as an interesting quantity to study. It is well known that for
the uniform distribution of breaking thresholds of individual
fibers and for the ELS dynamics, the probability distribution
is a power-law [28]

D(�) ∼ �−ξ , (10)

with ξ = 5/2. In the following we would see that in our case
of power-law distributed breaking thresholds the exponent ξ

undergoes a crossover from 3/2 to 5/2.
To exhibit the crossover behavior we follow the method

in Ref. [29]. For a bundle having large number of fibers, the
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f b(
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FIG. 4. Plot of the fraction of broken fibers fb(β) for a particular
value of β right before the complete breakdown of the bundle is
plotted for the analytical expression given in Eq. (9) with solid line.
The numerically obtained data represented by open circles matches
very well with the analytical curve.

number of avalanches of size � is given by [28]

D(�)

N
= ��−1e−�

�!

∫ xc

0
p(x)r(x)[1 − r(x)]�−1e�r(x)dx,

(11)

where

r(x) = 1 − xp(x)

1 − P (x)
. (12)

The expression for D(�) can be simplified to the following
form [29]:

D(�)

N
= ��−2e−�

�!

p(xc)

|r ′(xc)| (1 − e−�/�c ), (13)

with

�c = 2

r ′(xc)2(xc − b∗)2
. (14)

Using the Stirling approximation �! = ��e−�
√

2π�,
Eq. (13) can be written as

D(�)

N
= C�−5/2(1 − e−�/�c ), (15)

where C = (2π )−1/2p(xc)/|r ′(xc)| is a constant. From
Eq. (15), a clear evidence of crossover in the exponent ξ around
the avalanche size �c is prominent. So we have

D(�)

N
∝

{
�−3/2 for � � �c,

�−5/2 for � � �c.
(16)

In our case, we use power-law distribution p(b) ∼ b−1 in
the range from 10−β to 10β to obtain r ′(xc) = −e/10β , xc =
10β/e, and b∗ = 10−β . Substituting these values in Eq. (14)
we get the crossover avalanche size:

�c(β) = 2

(1 − e10−2β )2
. (17)

This crossover phenomenon has also been studied using
numerical simulations. For β = 1/(2 ln 10), Eq. (17) yields
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FIG. 5. (Color online) (a) Log-log plot of the binned data for
avalanche size distribution D(�) vs. � for β = βu = 1/(2 ln 10) for
N = 216, N = 218 . . . 226 (from left to right). (b) A finite-size scaling
works well: D(�)Nη against �N−ζ exhibits a good collapse of data
with η = 1.007 and ζ = 0.671, implying ξ = η/ζ = 1.50(1). This
value is consistent with the directly measured value of 1.50(2) from
the slopes in the intermediate region. The crossover is not observed
here since �c = ∞ for this particular value of β.

�c = ∞. Thus, only the ξ = 3/2 power law is observed as
any avalanche of finite-size � is less than the value of �c at
this particular value of β. In Fig. 5(a), the numerical data for
the avalanche size distribution for β = 1/(2 ln 10) has been
plotted for six different values of N starting from N = 216

to 226; N being increased by a factor of 4 at each stage. For
N = 216 to 222 the data has been averaged over 106 samples
and 400 000 and 100 000 samples for 224 and 226, respectively.
A finite-size scaling has also been done in Fig. 5(b) by use of
suitable powers of the bundle size N . This indeed exhibits an
excellent data collapse confirming the following scaling form:

D(�)Nη ∼ G[�/Nζ ], (18)

where G(y) is a universal scaling function of the scaled
variable y = �/Nζ . The best possible tuned values of the
scaling exponents obtained are η = 1.007 and ζ = 0.671.
Using these scaling exponents the value of ξ = η/ζ = 1.50(1)
is calculated, which is a very good tally with the analytical
result of 3/2.

We have also tried the same analysis for β = 0.22, 0.24, and
0.28. Using Eq. (17) we have obtained �c(β) = 11 741, 200.4,
and 31.66, respectively. A clear evidence of the crossover in
the exponent ξ around � = �c(β) is observed as shown in

100 101 102 103 104 105 106Δ
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10-10
10-8
10-6
10-4
10-2
100

D
(Δ
)

FIG. 6. (Color online) The avalanche size distribution for β =
0.22 (black), 0.24 (red), and 0.28 (blue) (from right to left) for bundles
of size N = 224. Slopes of the curve are ≈1.5 and ≈2.5 for small and
large avalanche sizes. The crossover size �c(β) are approximately
11 741, 200.4, and 31.66, respectively, evaluated using Eq. (17).

Fig. 6 for N = 224. The slope of the curve gradually crosses
over from ≈1.5 to ≈2.5 for large values of �. It has also
been observed that as β is increased, �c(β) gradually shifted
toward the origin, and therefore the regime over which ξ = 5/2
is valid gets extended. Such a crossover has been observed
earlier in Refs. [29,30] for the FBM with uniform distribution
of breaking thresholds ranged between a certain lower cutoff
blc and unity. Here, avalanche sizes smaller (larger) than some
crossover size �(blc) correspond to avalanche size exponents
3/2 (5/2). This implies that in our model, even for the highly
heterogeneous distribution of breaking thresholds, similar
crossover between the same two exponents takes place across
the crossover avalanche size �c(β).

It has also been observed that the total number of avalanches
�(N ) depends on the system sizes N as Nχ , where χ = 0.336
and 0.985 for β = 1/(2 ln 10) and 0.240, respectively. The
log-log plot of �(N ) against N for these two values of β fits to
excellent straight lines as shown in Fig. 7. We conjecture that χ
may be 1/3 and 1 exactly for β = βu and β > βu, respectively.
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)

FIG. 7. Plot of the average number of avalanches �(N ) required
to break the bundle of size N on a log - log scale: for β = 1/(2 ln 10),
�(N ) ∼ N 0.337 (filled circles) and for β = 0.240, �(N ) ∼ N0.985

(open circles).
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IV. SUMMARY

Properties of the fiber bundle model have been studied using
equal load sharing dynamics where the breaking thresholds of
the fibers have been assigned from a power-law distribution
p(b) ∼ b−1 in the range from 10−β to 10β . Variations of
different quantities characterizing the bundle have been studied
with the cutoff exponent β. The critical external load per
fiber σc(β) required for the global breakdown of the bundle
as well as the fraction fb(β) of broken fibers right before it
are estimated both analytically as well as numerically, and
a good correspondence has been observed. For very small
and very high values of β the breaking strength of only
a single fiber determines the critical strength of the entire
bundle. For example, for very small β, it is enough to tune
the external load to the strength of the weakest fiber, which
then triggers a large avalanche and the entire bundle fails,
implying σc(β) = 10−β . Such a behavior continues till β = βu

and this regime is analogous to the brittle failure of materials.
When β is raised beyond βu, equating the external load to the
strength of the weakest fiber is no more sufficient for the
global failure, the large number of fibers with breaking
thresholds near the minimum still dominate. Consequently,
the number of avalanches required for the breakdown of the

bundle gradually increases and the σc(β) slowly increases from
the weakest strength of 10−β but for β > βu, σc(β) remains
smaller than 10−βu . Therefore, a minimum in σc(β) is reached
at βm = 2βu, and from this point σc(β) starts increasing. As a
result, σc(β) becomes equal to 10−βu again and then increases
indefinitely. For very large β the external load must be raised to
σc(β) ≈ 10β to break the strongest fiber of breaking threshold
around 10β . This salient feature is a direct consequence of the
power-law distribution of the breaking thresholds.

More interestingly, we have also shown numerically that
the critical load σc(β,N ) approaches its asymptotic value
as σc(β,N ) = σc(β) + AN−1/ν(β). The finite-size correction
exponent ν(β) is first seen to increase sharply with β, reaches
a maximum, then decreases, and finally converges to a value
≈3/2. Statistical analysis of the avalanche sizes have been
done. The avalanche-size distribution follows a power law and
the associated exponent ξ crosses over from 3/2 to 5/2 through
a crossover avalanche-size �c(β).
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