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Scaling forms for relaxation times of the fiber bundle model
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Using extensive numerical analysis of the fiber bundle model with equal load sharing dynamics we studied
the finite-size scaling forms of the relaxation times against the deviations of applied load per fiber from the
critical point. Our most crucial result is we have not found any ln(N ) dependence of the average relaxation
time 〈T (σ,N )〉 in the precritical state. The other results are as follows: (i) The critical load σc(N ) for the
bundle of size N approaches its asymptotic value σc(∞) as σc(N ) = σc(∞) + AN−1/ν . (ii) Right at the critical
point the average relaxation time 〈T (σc(N ),N )〉 scales with the bundle size N as 〈T (σc(N ),N )〉 ∼ Nη and
this behavior remains valid within a small window of size |�σ | ∼ N−ζ around the critical point. (iii) When
1/N < |�σ | < 100N−ζ the finite-size scaling takes the form 〈T (σ,N )〉/Nη ∼ G[{σc(N ) − σ }Nζ ] so in the limit
of N → ∞ one has 〈T (σ )〉 ∼ (σ − σc)−τ . The high precision of our numerical estimates led us to verify that
ν = 3/2, conjecture that η = 1/3, ζ = 2/3, and, therefore, τ = 1/2.
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Fiber bundle models are used in materials science to study
the breakdown properties of materials in the form of a bundle
composed of a large number of parallel massless elastic fibers
[1–5]. It is well known that the failure of the entire fiber bundle
occurs at a critical value σc of the applied load per fiber and
at this point the system undergoes a change from a state of
local failure to a state of global failure. Consequently, σc acts
similarly to the critical point of a phase transition and the
behavior of the bundle around this point is associated with all
characteristics of critical phenomena. In this article we studied
the relaxation behavior of fiber bundles at and very close to
the critical point using extensive numerical simulations. We
showed that away from the critical point the relaxation times
obey the usual finite-size scaling theory. More interestingly,
we found that the amplitude of variation has no logarithmic
dependence in the precritical regime as predicted in the mean-
field theory of fiber bundles [6,7].

The fiber bundle model is described as follows. A bundle
of N parallel fibers is rigidly clamped at one end and is loaded
at the other end. Each individual fiber i is assigned a breaking
threshold bi of its own, i.e., it can sustain a maximum of
bi stress through it, beyond which it breaks. The breaking
thresholds {bi} are drawn from a probability distribution p(b)
whose cumulative distribution is P (b) = ∫ b

0 p(z)dz.
In the fiber bundle model the stress is a conserved quantity.

When a fiber breaks, the stress that was acting through it
is released and gets distributed among other intact fibers.
In the equal load sharing (ELS) version of the fiber bundle
model, the released stress is distributed equally among all
remaining intact fibers. Using this property the relaxation
behavior of the bundle can be understood. Two points must
be mentioned to describe the model in comparison to the
realistic situations: (i) To study the relaxation behavior the
bundle is externally loaded by a finite amount of stress per
fiber so a certain fraction of the total number of fibers have
their breaking thresholds below the applied load and they
break immediately. In comparison in standard experiments
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like “creep test” the breakdown starts from the weakest fiber.
(ii) In practice, fracturing in materials is always associated
with the phenomenon of “aging,” for example due to thermally
activated environmentally assisted stress corrosion [8]. Neither
of these mechanisms was incorporated in the fiber bundle
model studied here. Moreover, a local load sharing (LLS)
version of the fiber bundle model also often has been studied
in the literature where the released load is distributed to the
fibers situated within a local neighborhood of the broken fiber.
This version of fiber bundle model is considered to mimic the
failure of the actual realistic materials more closely.

In the following we will use σ for the notation of the
uniform applied load per fiber at the initial stage when all
fibers are intact. In comparison, xt will be used to denote the
stress per intact fiber after the t-th relaxation step. Therefore,
intially, the externally applied load is F = Nσ . As a result,
the bundle relaxes in a series of T successive time steps.
The relaxation time T is not really a real time, but it is an
integer that represents the number of load redistribution steps
for reaching the stable state. At the first step all fibers with
breaking thresholds less than σ break and, therefore, each
of these fibers releases σ amount of stress. Consequently,
the total amount of stress released is now distributed to
N [1 − P (σ )] intact fibers on the average, each of them gets
the new stress x1 per fiber. Therefore, after the first step of
relaxation F = Nx1[1 − P (σ )]. Similarly, the stress per fiber
in successive time steps are given by

F = Nx1[1 − P (σ )] = Nx2[1 − P (x1)] = Nx3[1 − P (x2)].

(1)

After T steps the system converges to a stable state when the
amount of stress released in the last step is no longer sufficient
to break even the next fiber in the increasing sequence of
breaking thresholds. Therefore, on the average xT +1 − xT <

1/N .
In this description when a fiber breaks, it is assumed that the

released stress gets distributed instantaneously among all intact
fibers, resulting a bunch of fibers breaking in one relaxation
step. In comparison there could be a situation when the stress
redistribution process takes place at finite speed [9,10]. The
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FIG. 1. (Color online) Plot of 〈T (σ,N )〉 against σ for bundle
sizes N = 10 000 (black), 30 000 (blue), and 100 000 (red) with N

increasing from bottom to top; σc ≈ 0.25.

stress acting at all fibers grow uniformly, but the moment the
stress reaches the breaking threshold of the weakest intact
fiber, it breaks. This fiber also releases stress and adds to the
rate of growth of stress in each fiber. Therefore, this model
is purely time dependent where real time must pass before
failures occur and they occur at the rate of one fiber failure at a
time. This distinction is important [9]. However, in this paper
we consider only the situation where the released stress from
a broken fiber is distributed instantaneously.

In the stable state one writes the applied load F (x) as a
function of the stress x per intact fiber at the stable state [6,7],

F (x) = Nx[1 − P (x)]. (2)

If, for x = xc, F (x) is maximum, then dF/dx = 0 yields the
following condition:

1 − P (xc) − xcp(xc) = 0. (3)

For a bundle with a uniform distribution of breaking thresholds
p(x) = 1 one obtains xc = 1/2 and Fc = N/4. The total
critical applied load Fc corresponds to the critical initial load
per fiber [6],

σc = Fc/N = 1/4. (4)

Numerically, the variation of relaxation times is determined
in the following way. We considered a completely intact bundle
of N fibers. Uniformly distributed breaking thresholds {bi}
were assigned to all fibers. An external load σ per fiber
was applied to the bundle. The corresponding relaxation time
T (σ,N ) was estimated for this load σ . This estimation was
repeated for different values of σ varying from 0 to 1/2 at
intervals of �σ = 0.001 but using the same set of breaking
thresholds {bi}. The entire calculation was then repeated
for a large ensemble of fiber bundles with uncorrelated sets
of breaking thresholds {bi} and for different bundle sizes
N . We observed that in the precritical regime the average
relaxation time 〈T (σ,N )〉 increases sharply as σ increases and
it has a finite but large peak at σc ≈ 1/4. The height of the
peak increases with increasing N (Fig. 1). In the postcritical
regime 〈T (σ,N )〉 gradually decreases as σ is increased well
beyond σc.

These numerical results on the relaxation dynamics are sup-
ported by mean-field calculations [6]. This analysis assumes

that for all bundle sizes N the critical threshold σc = 1/4 for
uniformly distributed breaking thresholds. In the vicinity of
the critical threshold the variation of the relaxation time with
the deviation |σc − σ | has a power-law form. In the postcritical
regime of σ > σc

T (σ,N ) ≈ π

2
(σ − σc)−1/2 (5)

and in the precritical regime of σ < σc and for the range where
(σc − σ ) � 1/4N [6]

T (σ,N ) ≈ ln(N )

4
(σc − σ )−1/2. (6)

We first noticed that for fiber bundles with uniformly
distributed breaking thresholds the average critical applied
load per fiber σc = 1/4 is actually valid only for infinitely
large bundles, i.e., for N → ∞. Truly, for bundles of finite
size the critical load depends on N and we calculated σc(N )
for different bundle sizes N . We define the critical applied
load σα

c (N ) for a particular fiber bundle α with a given set of
breaking thresholds {bi} as the maximum value of the applied
load σ per fiber for which the system is in the precritical state.
This means that if the applied load is increased by the least
possible amount to include only the next fiber in the increasing
sequence of breaking thresholds the system crosses over to
the postcritical state. On average, this requires enhancing the
applied load by 1/N .

The value of σα
c (N ) is numerically determined using the

bisection method. The simulation starts with a pair of guessed
values for σα

pre and σα
post corresponding to the precritical and

postcritical states, respectively. In the precritical state the
relaxation dynamics stops without breaking the entire bundle,
whereas in the postcritical state all fibers in the bundle break.
The bundle is then subjected to the mean of two stress values,
σ = (σα

pre + σα
post)/2 and then relaxed. If the final stable state

is precritical σα
pre is raised to σ , otherwise σα

post is reduced to σ .
This procedure is terminated when σα

post − σα
pre � 1/N and at

this stage we define σα
c (N ) = (σα

post + σα
pre)/2. This iteration

is repeated for a large number of un-correlated bundles α and
their critical loads are averaged to obtain σc(N ) = 〈σα

c (N )〉 for
a fixed bundle size N . The entire calculation then is repeated
for different values of N .

There exists a more straightforward way to calculate the
initial critical load per fiber σα

c (N ) of a specific fiber bundle.
If bα

(1),b
α
(2),b

α
(3), . . . ,b

α
(N) are the breaking thresholds ordered in

an increasing sequence, then

σα
c (N ) = max

{
bα

(1),
N − 1

N
bα

(2),
N − 2

N
bα

(3), . . . ,
1

N
bα

(N)

}
. (7)

Both methods need to order the breaking thresholds only once
in increasing sequence and this takes the major share of the
CPU. The well-known QUICKSORT method takes CPU of the
order of N ln N [11]. Comparing the two methods the bisection
method takes little more time, e.g., for a single bundle of
N = 224 the bisection method takes ≈1.15 times the time
required in the second method.

We assume that the average values of the critical load per
fiber σc(N ) for the bundle size N converges to a specific value
σc = σc(∞) as N → ∞ according to the following form:

σc(N ) − σc = AN−1/ν, (8)
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FIG. 2. (Color online) (a) Plot of σc(N ) − 1/4 with N−0.666 for
system sizes up to N = 31 623, which fits nicely to a straight line that
passes very close to the origin. (b) Data for larger values of N upto
222 are plotted as [σc(N ) − 1/4]N0.6615 against ln(N ), which exhibits
approximately constant variation.

where ν is a critical exponent. Accordingly, σc(N ) values are
plotted in Fig. 2. A plot of σc(N ) − σc against N−1/ν using
σc = 0.25 and 1/ν = 0.666 fits to an excellent straight line.
The least-squares fitted straight line misses the origin very
closely and has the form σc(N ) − 1/4 = 3.33 ×10−5 +
0.302N−1/ν . In Fig. 2(b), data for larger values of N are plotted
as [σc(N ) − 1/4]N0.6615 against N on a lin-log scale. The
intermediate part appears approximately constant, implying
again that 1/ν ≈ 0.662. Our conclusion is ν = 1.50(2) and
σc = 0.2500(1). We conjecture that the finite-size correction
exponent is ν = 3/2 and σc = 1/4 exactly [12].

These results are known in the literature from analytical
studies [13,14]. It has been estimated that [13]

σc(N ) = σc + 0.996N−2/3βc, (9)

where

βc =
[

P ′(xc)2x4
c

2P ′(xc) + xcP ′′(xc)

]1/3

, (10)

where P ′(x) = dP (x)/dx = p(x). In our case with the uni-
formly distributed breaking thresholds in the range {0,1};
P (x) = x which gives σc = 1/4, xc = 1/2, P ′(x) = 1, and
P ′′(x) = 0 for all 0 < x < 1, which makes βc = (1/2)5/3 ≈
0.3150. This gives

σc(N ) − σc = 0.996N−2/3βc = 0.3137N−2/3. (11)
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FIG. 3. (Color online) (a) Plot of the cumulative probability
distribution of HN (σα

c ) for N = 216 and for a sample size of 106

bundles with red color. The cumulative distribution of the Gaussian
approximation �N (σα

c ) also is plotted using black. (b) The maximal
difference χ (N ) between two cumulative distributions is plotted
against N using the log-log scale. The slope is found to be 0.155(5).

Therefore, apart from the exponent ν = 3/2, one can also
check the value of the amplitude A, which is estimated
numerically as 0.302 compared to its analytically obtained
value of 0.3137. The correspondence is quite good and this is
a confirmation of the rigorous result of Ref. [13].

For a large uncorrelated sample of fiber bundles of a specific
size N the critical loads per fiber σα

c (N ) is known to have a
Gaussian distribution around its mean value σc(N ) = 〈σα

c (N )〉.
Let its cumulative distribution be denoted by HN (σα

c ). As the
bundle size increases to very large values, this cumulative
distribution approaches its Gaussian approximation �N (σα

c ),
which is also the cumulative distribution of the Gaussian form:

A exp
{ − (

σα
c − σc

)2
/(2s2)

}
, (12)

where σc = xc[1 − P (xc)] = 1/4, s = γcN
−1/2, and γc =

xc{P (xc)[1 − P (xc)]}1/2. Using these results, it has been
shown that [13]

χ (N ) = max
∣∣HN

(
σα

c

) − �N

(
σα

c

)∣∣ < KN−1/6. (13)

This relation is also verified numerically in Fig. 3(a). For
the bundle size N = 216, the cumulative distribution HN (σα

c )
obtained from simulation and the �N (σα

c ) obtained from
the Gaussian approximation are plotted. In simulation, a
sample size of 106 bundles is studied for each bundle size N .
These critical loads σα

c s are arranged in the increasing order, so
the number of such thresholds below a certain σα

c is simply the
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FIG. 4. (Color online) The average relaxation time 〈T (σ,N )〉 is
plotted with the deviation from the critical point σ − σc(N ) per fiber
for N = 216 (black), 218 (red), and 220 (blue) with N increasing
from bottom to top. More specifically for each fiber bundle α first
its critical point σα

c is determined. Then for the same bundle the
relaxation times are measured for different deviations �σ = σ − σα

c

and then averaged over many different bundles.

HN (σα
c ). For each of these σα

c values the cumulative Gaussian
function �N (σα

c ) has been calculated. The absolute value of
the difference between these two distributions was estimated
for each σα

c and their maximal value χ (N ) has been found.
In Fig. 3(b) the function χ (N ) is plotted with N on a log-log
scale for 11 different bundle sizes. A power-law variation of
χ (N ) is observed as follows:

χ (N ) ∼ N−κ (14)

with κ = 0.155(5) [Fig. 3(b)].
Once we know the system-size-dependent critical loads

σc(N ) we studied how the average relaxation time 〈T (σ,N )〉 di-
verges as the critical load is approached. For every bundle α we
first calculated its critical load σα

c using the bisection method as
described above. Then, for the same bundle α, we calculated
the relaxation times for certain prefixed deviations |�σ | =
|σα

c − σ | from the critical stress and then averaged over
different uncorrelated bundles. Figure 4 shows how 〈T (σ,N )〉
approaches the critical relaxation time as σ → σc(N ). We
observe that the limiting relaxation times as |�σ | → 0 for
the precritical and postcritical states differ distinctly and call
them as 〈T pre(σc(N ),N )〉 and 〈T post(σc(N ),N )〉, respectively.

Next we calculated the average relaxation times when the
applied load per fiber takes the critical load. For each bundle α

we calculated two values of T : T pre denotes the largest value
of T in the precritical state and T post is the largest value of T

in the postcritical state. We see that T post is much larger than
T pre and when averaged over a large sample size 〈T post〉/〈T pre〉
approaches to 2 as N → ∞.

In Fig. 5(a) we plot 〈T pre(σc(N ),N )〉 and 〈T post(σc(N ),N )〉
against N on a log-log scale for a wide range of values of
N extending from 28 to 224, at each step the system size
being increased by a factor of 4. Both curves are nearly
straight and parallel for large N but have slight curvature
for small N . Upto N = 222 the averaging was done for 106

independent configurations and for N = 224 a total of 409 000
independent configurations were used. Therefore, the data
points are accurate enough to be analyzed more precisely.
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FIG. 5. (Color online) (a) Plots of the average maximal relaxation
time 〈T post(σc(N ),N )〉 in the postcritical regime (red) and the average
maximal relaxation time 〈T pre(σc(N ),N )〉 in the precritical regime
(blue) against the system size N using log-log scale. Both plots exhibit
a certain amount of curvature. (b) Slopes η(N ) between successive
points in (a) are estimated and η(N ) − 1/3 are extrapolated against
N−0.328 and N−0.262. The solid lines are obtained by least-squares
fits whose intercepts are 0.00061 and 0.00085 for the precritical and
postcritical regimes, respectively.

We define the slope between successive points in Fig. 5(a) as
η(N ) and observe that these slopes gradually approach 1/3
for both plots. We estimated suitable extrapolation methods
minimizing the errors and in Fig. 5(b) extrapolated η(pre,N ) −
1/3 against N−0.328 and η(post,N ) − 1/3 against N−0.262 for
the precritical and postcritical states, respectively. Individual
plots fit excellent to straight lines and their intercepts with
the vertical axes are 0.00061 and 0.00085, respectively. We
conclude that when the system is loaded with the precise value
of the critical stress the relaxation time grows as a power of
the system size as

〈T (σc(N ),N )〉 ∼ Nη, (15)

with η = 0.333(1).
Our data for relaxation times away from the critical point

are compared in Fig. 6 with the similar data presented in
Ref. [6] which assumed σc = 1/4 for all bundle sizes N . In
Fig. 6(a) 〈T (σ,N )〉/ ln(N ) is plotted against σc(N ) − σ . The
large sample sizes yielded data points with very little noise
and allowed us to plot for much smaller window size, i.e.,
�σ = 0.005 compared to 0.05 in Ref. [6]. It is observed that
three curves separate distinctly and systematically from one
another as �σ → 0. The same data are plotted in Fig. 6(b)
using a log-log scale. In this figure the absence of data collapse
is even more pronounced. We explain the difference in the

062137-4



SCALING FORMS FOR RELAXATION TIMES OF THE . . . PHYSICAL REVIEW E 87, 062137 (2013)

0.000 0.001 0.002 0.003 0.004 0.005

σc(N) - σ

0

2

4

6

8

10

12

14

16

〈T
(σ

, N
)〉

 / 
ln

(N
)

10-7 10-6 10-5 10-4 10-3 10-2 10-1

σc(N) - σ

100

101

〈T
(σ

, N
)〉

 / 
ln

(N
)

(a)

(b)

FIG. 6. (Color online) Comparison with the similar plots in
Ref. [6]. Plot of 〈T (σ,N )〉/ln(N ) against �σ = σc(N ) − σ for the
precritical regime but for much smaller window of �σ = 0.005 and
for N = 220 (black), 222 (red), and 224 (blue) with N increasing from
left to right. (a) On a lin-lin scale the three plots get separated from
one another as �σ → 0. (b) The data in (a) are replotted on a log-log
scale and the absence of data collapse is more distinctly visible in
this plot, with N increasing from bottom to top.

following way. The claimed validity of data collapse exhibited
in Ref. [6] is for a window size 10 times larger than ours. When
we reduced the window size and, thus, approached the critical
point even closer, the scaling by ln(N ) no longer works. We
see below that instead a simple power-law scaling works quite
well.

These data 〈T (σ,N )〉 against σc(N ) − σ for the precritical
regime are replotted in Fig. 7(a). The plots for the three N

values are completely separated. Now a finite-size scaling of
the two axes is done in Fig. 7(b) by use of appropriate powers
of the bundle size N . This indeed results an excellent collapse
of the data for the three different bundle sizes. This implies
that the following scaling form may describe the collapse:

〈T (σ,N )〉/Nη ∼ G[{σc(N ) − σ }Nζ ], (16)

where G(y) is an universal scaling function of the scaled
variable y. The best possible tuned values of the scaling
exponents obtained are η = 0.336 and ζ = 0.666. The col-
lapsed plots have two different regimes, an initial constant
part for very small values of �σ = σc(N ) − σ . In this regime
the scaled variable 〈T (σ,N )〉/Nη is a constant, say C. This
means 〈T (σ,N )〉 = CNη which is the retrieval of the Eq. (15).
Again, the constant regime of 〈T (σ,N )〉/Nη is extended
approximately up to {σc(N ) − σ }Nζ ≈ 1. This implies that
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FIG. 7. (Color online) Scaling for the precritical regime. (a) Plot
of 〈T (σ,N )〉 against σc(N ) − σ and for N = 220 (black), 222 (red),
and 224 (blue) with N increasing from bottom to top. (b) The data in (a)
are scaled suitably: 〈T (σ,N )〉/Nη against [σc(N ) − σ ]Nζ exhibits a
good collapse of the data as �σ → 0 with η = 0.336 and ζ = 0.666.
Here N increases from left to right.

the width of the constant regime is

σc(N ) − σ ∼ N−ζ . (17)

The exponent ζ can also be interpreted in the following
way. For a certain bundle size N there exists a specific
value of |�σ (eq,N )|, where 〈T (pre,σ,N )〉 = 〈T (post,σ,N )〉.
Around this window size 〈T (pre,σ,N )〉 > 〈T (post,σ,N )〉 for
|�σ (N )| > |�σ (eq,N )| and 〈T (pre,σ,N )〉 < 〈T (post,σ,N )〉
for |�σ (N )| < |�σ (eq,N )|. We have verified that |�σ (eq,N )|
also approaches zero as N−ζ with ζ ≈ 0.666. The exponent
ζ is recognized as the inverse of the exponent ν defined in
Eq. (8).

Beyond this constant regime is the power-law regime.
Assuming that the scaling in Fig. 7(b) is valid for all bundle
sizes until N → ∞ one would expect that an N -independent
power-law form holds in this limit:

〈T (σ )〉 ∼ (σc − σ )−τ . (18)

To ensure that Eq. (18) indeed holds good we need to assume
G(y) ∼ y−τ which implies the following scaling relation:

−τζ + η = 0 (19)

and, therefore, τ = η/ζ = 0.50(1).
Similar plots for the postcritical regime are shown in Fig. 8.

In Fig. 8(a) 〈T (σ,N )〉 is plotted with σ − σc(N ) using a log-log
scale. The scaling of the same data is shown in Fig. 8(b) as
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FIG. 8. (Color online) Scaling for the postcritical regime. (a) Plot
of 〈T (σ,N )〉 against σ − σc(N ) and for N = 220 (black), 222 (red),
and 224 (blue) with N increasing from bottom to top. (b) The data in (a)
are scaled suitably: 〈T (σ,N )〉/Nη against [σ − σc(N )]Nζ exhibits a
good collapse of the data as �σ → 0 with η = 0.336 and ζ = 0.666.
Here N increases from left to right.

〈T (σ,N )〉/Nη against [σ − σc(N )]Nζ which again show nice
data collapse. Here also we obtained very similar values of η =
0.336 and ζ = 0.666. The range of validity of the finite-size
scaling form in Eq. (16) may be determined from Fig. 7(b).
Here the data collapse is observed from the smallest value of
[σc(N ) − σ ]Nζ to about 100. Therefore, the range of validity
is 1/N < [σc(N ) − σ ] < 100N−ζ .

The entire set of calculations is repeated with breaking
thresholds for fibers drawn from the Weibull distributions
P (σ ) = 1 − exp(−σρ) with the shape parameter ρ = 5 and
the scale parameter 1. A similar use of Smith’s results yield
σc = (ρe)−1/ρ , xc = ρ−1/ρ , and βc = ρ−(ρ+3)/(3ρ)e−1/(3ρ).
Using ρ = 5 gives βc = 5−8/15e−1/15 = 0.3965. This gives

σc(N ) − σc = 0.3949N−2/3. (20)

We have estimated the values of σc(N ) numerically for five
different bundle sizes: 216 to 224 increased by a factor of 4 at
every step. Plotting them against N−2/3 and on extrapolation
as N → ∞ we have obtained σc(∞) = 0.5934(10) and A =
0.392(4), which are very much consistent with the analytical
results. Further, we have estimated the exponents ν, η, ζ , and
τ , which are also quite consistent with similar exponents with
uniformly distributed breaking thresholds. The critical points
as well as the critical exponents are summarized in Table I.

A simpler version of the fiber bundle model is the deter-
ministic case where the breaking thresholds of the N fibers are

TABLE I. Summary of the values of critical points and critical
exponents for different distributions of breaking thresholds, uniform
and Weibull. The results for the deterministic fiber bundle model
(DFBM) are also included. For each distribution the numerical
estimates are given in the first row and the conjectured values are
given in the second row.

P (σ ) σc ν η ζ τ

Uniform 0.250(1) 1.50(1) 0.336(5) 0.666(5) 0.50(1)
P (x) = x 1/4 3/2 1/3 2/3 1/2
Weibull 0.593(1) 1.50(1) 0.335(5) 0.663(5) 0.50(1)
P (x) = 1 − e−x5

(5e)−1/5 3/2 1/3 2/3 1/2
DFBM 0.2500(1) 1.00(1) 0.50(1) 1.00(1) 0.50(1)

1/4 1 1/2 1 1/2

uniformly spaced as bi = n/N where n = 1,2,3, . . . ,N [15].
For this deterministic case no averaging is necessary and,
therefore, studying only one configuration is sufficient. The
breaking thresholds are already in increasing order. In spite of
the absence of randomness the system has a very systematic
dependence on the size of the bundle N .

In Fig. 9(a) we show the plot of σc(N ) − 1/4 with 1/N for
different values of N starting from 210 to 226 and we see that all
points fall on a straight line. By a least-squares fit it is seen that

0 0.0002 0.0004 0.0006 0.0008 0.001
1/N

0

0.0001

0.0002

0.0003

0.0004

0.0005

σ c(N
)-

1/
4

103 104 105 106 107 108

N

0.499

0.500

0.501

[σ
c(N

)-
1/

4]
N

(a)

(b)

FIG. 9. The variation of the critical load σc(N ) on the system
size N in the deterministic case. (a) Plot of σc(N ) − 1/4 vs. 1/N

gives an excellent straight line that passes very close to the origin:
σc(N ) − 1/4 = −1.3 × 10−15 + 0.5/N . (b) Same data as in (a) but
here [σc(N ) − 1/4]N is plotted with N on a semilog scale and the
plot exhibits a horizontal straight line indicating that quite possibly
σc(N ) = 1/4 + 1

2N
.
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103 104 105 106 107 108N
101

102

103

104

 Tpost(σc(N),N)

Tpre(σc(N),N)

FIG. 10. (Color online) The deterministic case where breaking
thresholds for individual fibers are uniformly spaced at an interval
of 1/N . The average relaxation time T (σc(N ),N ) is plotted with the
bundle size N on a log-log scale for N = 210 to 226. The slopes
are 0.502 and 0.501 for the precritical and postcritical regimes,
respectively.

these points fit excellently to a straight line passing very close
to the origin: σc(N ) − 1/4 = −1.3 × 10−15 + 0.5/N . To see
the variation even more distinctly, we plot in Fig. 9(b) [σc(N ) −
1/4]N against N on a lin-log scale. The fitted straight line
is very much parallel to the ln(N ) axis and has the value
0.5000(1). We conjecture that the exact form of variation may
be σc(N ) − 1/4 = 1

2N
.

The maximal relaxation times T pre(σc(N ),N ) and
T post(σc(N ),N ) at the critical loads also were calculated for the
deterministic fiber bundle model. We show both these plots in
Fig. 10 against N using a log-log scale for the same sizes of the
fiber bundles as in Fig. 9. Unlike the stochastic fiber bundles
here the plots fit nicely to straight lines without any systematic
curvatures for small bundles. From slopes we estimate the
exponents as 0.502 and 0.501, respectively, for the precritical
and postcritical regimes. We conclude a common value of
η = ηpre = ηpost = 0.500(5) for both exponents.

Finally, a finite-size scaling of the relaxation times as a
function of deviation from the critical load is also exhibited in
Fig. 11. In Fig. 11(a) T (σc(N ),N ) is plotted against σc(N ) − σ

using again the double logarithmic scales for bundles of sizes
N = 218 to 226. It is observed that each curve has considerable
curvature, yet it is apparent that as the bundle sizes become
increasingly larger they tend to assume a power-law form.
We again tried a finite-size scaling of these in Fig. 11(b) and
tried to determine if a data collapse for very small deviations
from the critical point is possible. Plotting T (σ,N )/N1/2

against [σc(N ) − σ ]N we do find a reasonably good collapse
for the small values of [σc(N ) − σ ]N . From the scaling
exponent values η = 1/2 and ζ = 1 we conclude a value for
the exponent τ = 1/2 for the precritical regime. The same
exponent values for η, ζ , and τ are also concluded for the
postcritical regime.

To summarize, we have revisited the relaxation behavior
of the fiber bundle model with equal load sharing dynamics
using extensive numerical calculations. Numerical values of
a number of critical points and exponents were estimated
very accurately and have been compared with their analytical

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100
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100
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102
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104

T(
σ,

Ν
)

100 101 102 103 104 105 106 107 108

[σc(N) - σ]Νζ

10-4

10-3

10-2

10-1

100

T(
σ,

Ν
) /

 Ν
η

(a)

(b)

FIG. 11. (Color online) The deterministic case: (a) Plot of T (σ,N )
against [σc(N ) − σ ] for N = 218 to 226, the bundle size is increased
by a factor of 4 at each step with N increasing from bottom to top.
(b) A finite-size scaling analysis of the data in (a) using the scaling
form in Eq. (16) with η = 1/2 and ζ = 1. Here N increases from left
to right.

counterparts known in the literature. For breaking thresholds
distributed uniformly and with Weibull distribution it has been
observed that the critical load σc(N ) for a bundle of size N

approaches the asymptotic values of 1/4 and (5e)−1/5 [13].
The numerical value of the finite-size correction exponent ν

was obtained very close to its exact value of 3/2 [13,16,17].
However, the value of the exponent κ was found to be slightly
smaller than its exact value of 1/6 [13]. In addition, the
following new results have been obtained in this work. At
the critical point, the average relaxation time 〈T (σc(N ),N )〉
grows as Nη(N) and the exponent η(N ) also approaches its
asymptotic value of 1/3. More importantly, away from the
critical point, the average relaxation time 〈T (σ,N )〉 obeys the
usual scaling form with respect to N and the deviation from
the critical point |�σ |. Our most crucial result is that we found
no ln(N ) dependence of the average relaxation time 〈T (σ,N )〉
in the precritical state.
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