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Double transition in a model of oscillating percolation
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Two distinct transition points have been observed in a problem of lattice percolation studied using a system of
pulsating disks. Sites on a regular lattice are occupied by circular disks whose radii vary sinusoidally within [0,R0]
starting from a random distribution of phase angles. A lattice bond is said to be connected when its two end disks
overlap with each other. Depending on the difference of the phase angles of these disks, a bond may be termed
as dead or live. While a dead bond can never be connected, a live bond is connected at least once in a complete
time period. Two different time scales can be associated with such a system, leading to two transition points.
Namely, a percolation transition occurs at R0c = 0.908(5) when a spanning cluster of connected bonds emerges
in the system. Here, information propagates across the system instantly, i.e., with infinite speed. Secondly, there
exists another transition point R∗

0 = 0.5907(3) where the giant cluster of live bonds spans the lattice. In this case
the information takes finite time to propagate across the system through the dynamical evolution of finite-size
clusters. This passage time diverges as R0 → R∗

0 from above. Both the transitions exhibit the critical behavior of
ordinary percolation transition. The entire scenario is robust with respect to the distribution of frequencies of the
individual disks. This study may be relevant in the context of wireless sensor networks.
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I. INTRODUCTION

The beauty of a percolation model lies in its simplicity
as well as nontriviality in studying the order-disorder phase
transition [1–3]. A number of variants of the percolation model
have been introduced in the last several decades [4–8]. The
theory of percolation has been successfully applied to a variety
of problems such as metal-insulator transition [9], epidemic
spreading in a population [10,11], gelation in polymers [12],
wireless communication networks [13–15], etc. The generic
feature of all percolation models is the appearance of long-
range connectivity from the short-range connectedness when
the control variable is tuned to the critical point [16]. The
critical points of the percolation models are dependent on
the geometry of the system, whereas their critical behavior
is characterized by a universal set of critical exponents [1].

Wireless sensor networks (WSNs) [13] are usually com-
posed of sensor nodes which are deployed in a regular topology
in the form of a grid for collecting various environmental
data, e.g., temperature and humidity. Often a sensor node
has a low-powered radio, and limited processing and storage
capabilities. Hence it is important that nodes can send collected
data to a base station using a multihop radio link through the
intermediate nodes in a WSN.

The wireless range of each node is approximately circular
and a direct path is established when a node becomes
connected to the base station through overlapping wireless
ranges of intermediate nodes. This problem is similar to the
percolation problem as the base station and a transmitting
node become part of a percolating cluster when a radio link
is established through overlapping radio transmission ranges
of intermediate nodes. It is well known that the wireless
ranges of low-power sensor nodes fluctuate temporally due to
interference and noise [17–19]. It is important to know when
such a percolating path exists as a sensor node can then transmit
its packets to the base station without any need for buffering
the packets in intermediate nodes, as each sensor node has
very little buffer space and packets that cannot be immediately

transmitted are usually dropped. Our study of the oscillating
percolation problem is an attempt in understanding percolation
in the presence of such time-varying transmission ranges.
Such temporal variations exist in above-ground [18,19], above-
ground to underground [20], and aerial-sensor networks [21].
The speed of variation of these transmission ranges is usually
much slower compared to radio transmission speed and hence
a percolating cluster persists for a long enough duration for
transmitting packets in a WSN.

In this paper, our objective is to model the temporal
fluctuations of radio transmission ranges in the WSNs using the
framework of percolation theory. Sites of a square lattice are
occupied by circular disks of time-varying radii R(t) which
pulsate sinusoidally, mimicking the temporal variations of
the radio transmission ranges of sensor nodes. Accordingly,
a bond between a pair of neighboring sites is considered to
be connected if and only if the disks at these sites overlap.
Initial assignment of random phase angles of the pulsating
disks makes the system heterogeneous. Therefore, the duration
of time that a bond remains connected depends on the phases
of the two end disks and is different for different bonds. The
maximal value of disk radii R0 is the same for all disks and is
the control variable of the problem. In some instants of time
the system may be globally connected through the spanning
paths of connected bonds between the opposite boundaries
of the lattice. In the time-averaged description, the system
undergoes a continuous percolation transition for R0 > R0c for
the infinitely large system. Further, for R0 < R0c when there
exists no spanning path, information can still propagate across
the system through different finite-size clusters of connected
bonds which appear in different instants of time, if longer
propagation time is allowed. On average, this transmission
time increases as R0 is decreased and it diverges as R0 → R∗

0
from above. In the following we present evidence that the
system undergoes a second percolation transition at this point.
We have studied the critical properties of the system around
both the transition points. This study may also be relevant in
the context of spreading of epidemic disease in a population,
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FIG. 1. Snapshots of the time-dependent percolation configuration have been shown on a square lattice of size L = 24 with periodic
boundary conditions along the horizontal direction. The radii of all the disks having angular frequency ω = 1 pulsate with time as per Eq. (1)
and are different at a given time t due to the random initial phases {φ}. For R0 = 0.85, the snapshots are taken at t = 150dt, 300dt, 500dt ,
and 600dt (from left to right), where dt = π/L2. The largest cluster painted in magenta (dark grey) sometimes spans the entire lattice and
sometimes does not.

spreading of computer viruses through the Internet, and even
for rumor spreading in social media, etc.

The paper is organized as follows. We start by describing the
model of oscillating percolation in Sec. II. The connectivity
properties of lattice bonds are investigated in Sec. III. The
calculation of the order parameter and the spanning probability
is described in Sec. IV. In Sec. V, we discuss the dependence of
the percolation properties on the frequencies of the pulsating
disks. In Sec. VI, we have observed the existence of a second
percolation transition point defined in terms of two time scales
for the speed of information propagation through the connected
clusters. In Sec. VII, we generalize the model of oscillating
percolation. Finally, we summarize in Sec. VIII.

II. MODEL

A circular disk of radius R(t) that varies with time t has
been placed at every site of a square lattice of size L × L with
unit lattice constant. The radii of the disks pulsate periodically
following a sinusoidal variation as

R(t) = (R0/2)[sin(ωt + φ) + 1], (1)

where R0 is the control variable that varies in the range
[0,1]; the phase φ and the angular frequency ω being two
parameters. At time t = 0, every site is assigned a disk of
radius R(0) with a random phase angle drawn from a uniform
probability distribution p(φ) = 1/2π, 0 � φ < 2π . With this
only randomness in phase angles, the radii of the disks start
pulsating between [0,R0] following Eq. (1) in a completely
deterministic fashion.

A bond between a pair of neighboring disks of radii R1(t)
and R2(t) is defined to be connected only when

R1(t) + R2(t) � 1, (2)

which is referred to as the sum rule. The connection status
of every bond over a period T = 2π/ω would be repeated ad
infinitum. A group of sites interlinked through the connected
bonds forms a cluster. At a particular time there are several
clusters of different shapes and sizes. During the time
evolution, sometimes the largest cluster spans the entire lattice
and establishes a global connection (Fig. 1). Therefore, within
one time period T , the system in general switches between
the percolating and nonpercolating states. We define a flag

η(t) = 1 and 0 for the percolating and nonpercolating states,
respectively, and its variation is exhibited in Fig. 2. The average
residence time in percolating state increases on increasing
R0. To estimate how much the disk configuration becomes
different from its initial configuration in time t we define
a Hamming distance �(t) = max{|Ri(t) − Ri(0)|} calculated
over all sites i which is found to vary as �(t) = R0 sin(πt/T ).

III. CONNECTIVITY OF THE BONDS

The phase difference �φ between the two pulsating disks
at the ends of a bond has a crucial role for the connectivity of
the bond. For R0 = 1/2, the bond is connected only at a single
instant within the time period T if the disks are in the same
phase, whereas, for R0 = 1 the bond remains always connected
if the disks are in the opposite phase. This implies that for
1/2 < R0 < 1, a bond is connected within a period T only
when the phase difference of the two end disks lies within a cer-
tain range. The maximum value of the sum R1(t) + R2(t) must
be R0[cos(�φ/2) + 1] � 1 for the bond to be connected and

�φ = |φ2 − φ1| � �φc = 2 cos−1(1/R0 − 1). (3)
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FIG. 2. For ω = 1 and L = 128, the phase representing variable
η(t) has been plotted with t during a period T for R0 = 0.88, 0.90, and
0.92 (from top to bottom). The values of η(t) = 1 and 0 correspond
to the percolating and nonpercolating phases, respectively.
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FIG. 3. Plot of the density of dead bonds pd (R0) against R0 which
never get connected during the entire time evolution. The numerically
obtained data for system size L = 256 (filled circles) fit very well with
the functional form given in Eq. (5) (solid line).

Evidently, this range increases with increasing the value of
R0. The fraction of time over which a bond remains connected
within a period T is given by

fT (R0,�φ) = 1/2 − (1/π ) sin−1[(1/R0 − 1) sec(�φ/2)].

(4)

For a connected bond we must have fT (R0,�φ) � 0 which
also gives Eq. (3). For the special case of R0 = 1 and �φ = π

we get fT = 1.
This implies that a bond remains unconnected forever

if �φ > �φc. We call these bonds the “dead” bonds. In
contrast, the remaining set of bonds dynamically changes their
connectivity status within a period T and are referred as the
“live” bonds. The densities of dead and live bonds are denoted
by pd and pl , respectively. Expectedly, pd increases when R0

is decreased from 1 and it approaches unity as R0 → 1/2.
Since p(φ) is uniform, the quantity pd (R0) is calculated as

pd (R0) = 1 − 2p(φ)�φc

= 1 − (2/π ) cos−1(1/R0 − 1). (5)

In Fig. 3, good agreement is observed between the plots of
the numerically estimated values of pd (R0) against R0 and the
functional form given in Eq. (5).

IV. THE ORDER PARAMETER AND THE SPANNING
PROBABILITY

The order parameter �(R0,L) is defined as the fractional
size of the largest cluster, doubly averaged with respect to time
between 0 and T and over many initial configurations C with
different sets of random phase angles {φi}.

�(R0,L) = 〈〈smax(R0,L)〉T 〉C/L2. (6)

We also define �(R0,L) as the spanning probability from the
top to the bottom of the lattice.

In numerical simulations time is increased in equal steps
of dt = T/(2L2). A periodic boundary condition has been
imposed along the horizontal direction, whereas the global
connectivity is checked along the vertical direction as in
cylindrical geometry. Both the order parameter �(R0,L) and
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FIG. 4. For ω = 1, and the system sizes L = 64 (black), 128
(red), and 256 (blue) (arranged from left to right). (a) The spanning
probability �(R0,L) has been plotted against R0. (b) Finite-size
scaling plot of the same data with R0c = 0.908(5) and 1/ν = 0.75
exhibits a very nice data collapse.

the spanning probability �(R0,L) are estimated for a large
number of values of 1/2 < R0 � 1 with a minimum increment
of �R0 = 0.001.

In Fig. 4(a), �(R0,L) has been plotted against R0 for
three different system sizes using ω = 1 for all disks. These
curves intersect approximately at the point [R0c,�(R0c)]. We
estimate R0c ≈ 0.90 and the spanning probability �(R0c) ≈
0.63, which is quite consistent with the value 0.636 454 001
[22] obtained using Cardy’s formula [23]. For a more precise
estimation of R0c we define R0c(L) for individual system
sizes by �[R0c(L),L] = 1/2. The R0c(L) values are estimated
by linear interpolation of the data in Fig. 4(a) and then
extrapolated to L → ∞ to obtain R0c. Tuning the value of R0c

the difference R0c − R0c(L) has been plotted against L−1/ν to
obtain the best value of R0c = 0.908(5). Here ν = 4/3, the
correlation length exponent of ordinary percolation. Further,
for a finite-size scaling plot �(R0,L) has been plotted against
(R0 − R0c)L1/ν . An excellent data collapse for all three system
sizes in Fig. 4(b) indicates the finite-size scaling form

�(R0,L) ∼ G[(R0 − R0c)L1/ν]. (7)

A similar analysis has been performed for the order parameter
�(R0,L). Figure 5(a) shows �(R0,L) against the R0 plot
for the same three system sizes and their finite-size scaling
analyses have been done in Fig. 5(b), indicating the scaling
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FIG. 5. For ω = 1, (a) variation of the order parameter �(R0,L)
as defined in Eq. (6) with R0 has been shown for the system sizes
L = 64 (black), 128 (red), and 256 (blue) (arranged from left to right);
(b) finite-size scaling of the same data using R0c = 0.908(5), 1/ν =
0.75, and β/ν = 0.114(5) exhibits an excellent data collapse.

form

�(R0,L)Lβ/ν ∼ F[(R0 − R0c)L1/ν]. (8)

From this scaling we get β/ν = 0.114(5) compared to the
exact value of β/ν = 5/48 ≈ 0.1042 with β = 5/36 [1] for
ordinary percolation.

V. PERCOLATION WITH DISTRIBUTED FREQUENCIES

Now we consider the situation where each disk is randomly
assigned a frequency ω1 with probability f and frequency
ω2 with probability 1 − f with previously prescribed random
phase angles. The time period T(ω1,ω2) has been calculated
numerically for a large number of pairs of angular frequen-
cies, where the frequencies are the rational numbers. Since
for two rational numbers a/b and c/d, HCF(a/b,c/d) =
HCF(a,c)/LCM(b,d), HCF and LCM being the highest
common factor and lowest common multiplier, respectively,
we find the following functional form

T(ω1,ω2) = 2π/HCF(ω1,ω2) (9)

which is independent of 0 < f < 1. A generalized form of the
above expression for T can further be given for the mixture of
N distinct frequencies ω1,ω2, . . . ,ωN as

T(ω1,ω2,...,ωN ) = 2π/HCF(ω1,ω2, . . . ,ωN ). (10)
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FIG. 6. Plot of �(t) against t for L = 64, R0 = 1, and only
for one initial configuration. The system is composed of three
different types of disks characterized by their own frequencies:
ω1 = 1/3, ω2 = 2/3, and ω3 = 4/3. Here, we find that the minimum
value of �(t) = 2.96 × 10−4 is at t = 18.85. The numerical estimate
of T = 18.85 matches considerably well with the value of T = 6π

calculated using Eq. (10).

This formula has been numerically verified using the mixtures
up to five distinct frequencies. For example, the time period is
estimated using the plot of �(t) against t in Fig. 6 for three
distinct frequencies.

This model is further extended by assigning a distinct fre-
quency to each disk drawing them from a uniform distribution
p(ω) between [0,1]. In this case, T is very large and therefore
we run the simulations up to t = 10π , in steps of dt =
2π/(2L2). Surprisingly, the critical point R0c = 0.908(5), the
crossing probability ≈0.63, and the set of critical exponents
remain unaltered within our numerical accuracy, i.e., they do
not depend on the actual number of distinct frequencies.

Here, we put forward an explanation for this frequency
independence. Let p(R) be the probability distribution of
the radii of the disks which we argue to be independent of
time using Eq. (1). Introducing a variable Q = ωt , the joint
distribution function p(Q,R) can be expressed in terms of
the distribution functions of the two mutually independent
variables Q and φ as, p(Q,R) = p(ωt)p(φ)|J (Q,R)|, where
J (Q,R) is the Jacobian of the transformation. Finally, the
marginal distribution of R is calculated from p(Q,R) and has
the form

p(R) = 1/(π
√

RR0 − R2), (11)

independent of the distribution of p(ω). This result can be
compared for a system having a uniform distribution of disk
radii between [0,R0], where the transition occurs at R0c =
0.925(5) [24]. Equation (11) has been verified numerically
and the matching is very good (not shown here). Using this
equation one can calculate the probability that a bond is
connected by the sum rule. Equating this probability to 1/2,
the random bond percolation threshold, and neglecting local
correlations one obtains an approximate estimate of R0c = 1.

VI. THE SECOND PERCOLATION TRANSITION

In this section we exhibit that a second percolation transition
exists in terms of the passage time for information propagation.
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For this description we consider that information propagates
with infinite speed within a cluster of connected bonds, i.e.,
spreads instantly to all sites of the cluster irrespective of
the site of its introduction. This implies that for R0 > R0c

there exists a spanning cluster across the system through
which information can be transmitted at the same time instant
from one side of the system to its opposite side. On the
other hand, for R0 < R0c there are finite isolated clusters of
connected bonds which dynamically change their shapes and
sizes.

Now we introduce the second mechanism for information
propagation. We assume that the sites of an isolated informed
cluster of connected bonds retain the information with them-
selves forever. In a later time during the time evolution, this
informed cluster may merge with another uninformed cluster
and information would then propagate instantly to the sites of
the new cluster. It is therefore apparent that if one waits long
enough, maybe several multiples of the time period T , it is
likely that information would propagate through the system
even when R0 < R0c. More elaborately, all sites at the top
row of the square lattice are given some information at time
t = 0. This information is instantly transmitted to all sites
of all clusters that have at least one site on the top row.
All these sites are now informed sites and they keep the
information with them. Since time is increased in steps of
dt , at the next time step the status of every bond is freshly
determined and some new sites (clusters) may get linked to
these informed sites through a fresh set of connected bonds.
Immediately, the information is transmitted again to all sites
of all these clusters. In this way the information spreads to
more and more sites of the entire lattice. Sometimes it may
happen that the spreading process pauses for a few time steps,
although the statuses of different bonds are still changing.
We assume that the spreading process terminates permanently
when the information reaches the bottom of the lattice. The
time required on average for this passage is denoted by
TI (R0,L). Since the average number of connected bonds in
the system decreases when the value of R0 is decreased, this
average information passage time increases. Finally, TI (R0,L)
diverges when R0 approaches R∗

0 from above. Therefore,
we recognize R∗

0 as the second critical point of percolation
transition.

In general for R0 > 1/2, the live and dead status of all bonds
of the lattice are determined. This gives a frozen configuration
of live and dead bonds for every initial configuration of
random phase angles. Only the live bonds can take part in the
information propagation, and therefore, for a global passage of
information across the system, it is necessary that the system
must have a spanning cluster of live bonds. This leads us to
identify the critical point R∗

0 as the configuration averaged
minimum value of R0 when a spanning cluster of live bonds
appears in the system. Numerically, the precise value of R∗

0 has
been estimated using the bisection method. We started with a
pair of values of R0, namely, Rhi

0 and Rlow
0 , corresponding to

the globally connected and disconnected system, respectively,
through the live bonds. This interval is iteratively bisected until
it becomes smaller than a preassigned tolerance value of 10−7.
Averaging over a large number of independent configurations
R∗

0 (L) for the system size L is estimated. The entire procedure
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FIG. 7. (a) Average passage time for information propagation
TI (R0,L)/L2 has been plotted against the deviation from the critical
point R0 − R∗

0 (L) for L = 32 (black), 64 (red), 128 (blue), and 256
(magenta) (arranged from bottom to top) using ω = 1 for all the
disks. As R0 → R∗

0 (L), the time TI (R0,L) diverges. (b) A scaling
by TI (R0,L)/L3.04 against [R0 − R∗

0 (L)]L0.07 exhibits a good data
collapse.

is then repeated for several values of L and extrapolated
to L → ∞ to obtain R∗

0 = R∗
0 (∞). We find that the usual

extrapolation method using L−1/ν works very well here as
well with ν = 4/3. Our best estimate for the critical point is
R∗

0 = 0.5907(3).
The average information propagation time TI (R0,L)/L2

has been plotted against R0 − R∗
0 (L) in Fig. 7(a) for four

different system sizes using ω = 1 for all the disks. It is
observed that as R0 approaches R∗

0 , the propagation time
becomes increasingly larger. Further, for a specific value of
R0, the propagation time increases with the system size. In
Fig. 7(b) the scaled plot of the same data has been exhibited.
A data collapse is obtained when TI (R0,L)/L3.04 has been
plotted against [R0 − R∗

0 (L)]L0.07. This is consistent with
the variation of the largest passage time which grows as
TI (R∗

0 ,L) ∼ L3.08.
To characterize precisely the second transition point in

terms of the live bonds, we have also estimated the fractal
dimension df of the largest cluster of live bonds, the exponent
γ for the second moment of the cluster size distribution
at R∗

0 , and the order parameter exponent β around R∗
0 .

These exponents are very much consistent with the ordinary
percolation exponents in two dimensions.
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An approximate estimate of the critical point R∗
0 can also be

made neglecting the local correlations. At the transition point,
the density of live bonds pl(R∗

0 ) is equated to 1/2, the random
bond percolation threshold on the square lattice. Using Eq. (5)
we obtain R∗

0 = 2/(2 + √
2) ≈ 0.5858, which is very close to

our numerically obtained value of R∗
0 = 0.5907(3).

VII. GENERALIZED OSCILLATING PERCOLATION

In this section we have generalized our model by introduc-
ing a shift parameter that enhances the disk radii by an amount
Rs . Therefore, the radius of a disk sinusoidally varies between
Rs and R0 + Rs as

R(t) = Rs + (R0/2)[sin(ωt + φ) + 1]. (12)

For a specific value of Rs , it is now more likely that the radii of
the end disks of a bond would satisfy the sum rule. Therefore
the density of connected bonds at any given instant of time
t gets enhanced. As a consequence, the value of the critical
amplitude R0c(Rs) decreases from its value R0c for Rs = 0.

Variation of the order parameter �(R0,Rs,L) has been
studied against R0 for three different shifts Rs . For each Rs

three different system sizes L have been exhibited in Fig. 8(a).
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FIG. 8. For Rs = 0.001 (black), 0.05 (red) and 0.1 (blue)
(arranged from right to left), and for L = 64, 128 and 256 for each
Rs . (a) The variation of the order parameter �(R0,Rs,L) with R0

has been shown using ω = 1 for all the disks. (b) The same data
as in (a) has been scaled suitably. A scaling by �(R0,Rs,L)Lβ/ν

against [R0/(1 − 2Rs) − R0c]L1/ν with R0c = 0.908(5), 1/ν = 0.75
and β/ν = 0.112(5), exhibiting a nice data collapse.

Using the same data, in Fig. 8(b) we show the scaling form

�(R0,Rs,L)Lβ/ν ∼ F[(R0/(1 − 2Rs) − R0c)L1/ν] (13)

for the order parameter works very well with R0c = 0.908(5).
The best data collapse is obtained using 1/ν = 0.75 and β/ν =
0.112(5). Again, the finite-size scaling exponents closely
match with the exponents of the ordinary percolation in two
dimensions.

From Fig. 8(b) equating [R0/(1 − 2Rs) − R0c]L1/ν = 0
one gets

R0c(Rs) = (1 − 2Rs)R0c. (14)

Numerical values of R0c(Rs) are in very good agreement with
those obtained from Eq. (14). The shift Rs effectively reduces
the lattice constant by an amount 2Rs . This explains the origin
of the factor (1 − 2Rs) in Eq. (14).

VIII. SUMMARY

We have formulated a percolation model using a collection
of pulsating disks keeping in mind the global connectivity
properties of the wireless sensor networks in the presence of
temporal fluctuations of radio transmission ranges. Every site
of a regular lattice is occupied by a circular disk which pulsates
sinusoidally within [0,R0]. The initial state is characterized
by the random phase angles of the pulsating disks. Further,
a lattice bond is said to be connected as long as the pair
of end disks overlap. The maximal radius R0 acts as the
control variable whose value is tuned continuously to change
the fraction of the connected bonds in the system. The first
transition takes place at R0c = 0.908(5) when the giant cluster
of connected bonds spans the entire system. It is imagined
that the information passes through the spanning cluster
instantly, i.e., with infinite speed for all R0 > R0c. Moreover,
the information can even transmit through the system when
there are only isolated finite-size clusters of connected bonds
for R0 < R0c. This happens when informed clusters come in
contact with the uninformed clusters and pass the information.
Such transmission takes a finite time to cover the system and it
diverges when R0 approaches R∗

0 from above; R∗
0 = 0.5907(3)

marks the second transition point. A consideration of the phase
differences between the end disks of bonds allows one to
classify all bonds in terms of dead and live. Dead bonds can
never be connected, whereas the live bonds are connected at
least once within one period. Interestingly, we could recognize
R∗

0 to be the transition point when the global connectivity
through the spanning cluster of live bonds first appears in
the system. Expectedly, both the transitions exhibit the critical
behavior of ordinary percolation transition since the interaction
is short ranged.

For future investigations, one can generalize this model by
placing the centers of the pulsating disks at random positions
on a continuous plane by a Poisson process, like in continuum
percolation [3,25,26].
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