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Jamming and percolation transitions in the standard random sequential adsorption of particles on regular
lattices are characterized by a universal set of critical exponents. The universality class is preserved even in
the presence of randomly distributed defective sites that are forbidden for particle deposition. However, using
large-scale Monte Carlo simulations by depositing dimers on the square lattice and employing finite-size scaling,
we provide evidence that the system does not exhibit such well-known universal features when the defects have
spatial long-range (power-law) correlations. The critical exponents ν j and ν associated with the jamming and
percolation transitions, respectively, are found to be nonuniversal for strong spatial correlations and approach
systematically their own universal values as the correlation strength is decreased. More crucially, we have found
a difference in the values of the percolation correlation length exponent ν for a small but finite density of defects
with strong spatial correlations. Furthermore, for a fixed defect density, it is found that the percolation threshold
of the system, at which the largest cluster of absorbed dimers first establishes the global connectivity, gets
reduced with increasing the strength of the spatial correlation.

DOI: 10.1103/PhysRevE.103.042134

I. INTRODUCTION

The study of adsorption of particles onto solid surfaces is
a subject of great interest in different disciplines of science
and technology [1–4] due to its relevance in diverse appli-
cations, including protein adsorption [5], ion implantation in
semiconductors [6], and thin film deposition technologies for
surface coatings and encapsulations [7]. In the simplest case
of adsorption leading to monolayer formation, such as the
binding of protein molecules on glass or metals [2], one con-
siders that the process of adsorption takes place irreversibly
and the particles have no mobility. Consequently, they remain
at their position of adsorption forever. However, many com-
plex dynamical phenomena, such as diffusion, desorption, and
thermal expansion of particles, are often found to be associ-
ated with the process of adsorption occurring in the real-world
systems [8–10]. It has been observed that such underlying
mechanisms crucially affect the morphology of the growing
monolayer formations. Apart from that, properties of the sur-
face, for example, the surface roughness or the interfacial
interaction play a significant role in the kinetics of adsorption
[11]. However, to our knowledge, the latter aspects have not
been studied in great detail using theoretical models.

The theoretical study of monolayer formation in the limit
of irreversible adsorption has been carried out quite inten-
sively over the last several decades through the stochastic
models of random sequential adsorption (RSA) [1,12,13]. In
the standard RSA, particles are absorbed sequentially and
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irreversibly at random positions onto an initially empty sub-
strate, subject to a constraint that they only interact through
excluded volume interaction. The kinetics of adsorption termi-
nates when a jamming state is reached where no more vacant
space is available to accommodate a single particle. The sur-
face coverage p, defined as the volume fraction of the surface
occupied by the adsorbed particles, attains a nontrivial value
p j at the jamming limit. The exact value of p j is known only
for one-dimensional systems in both continuum and lattice
spaces [14,15].

Another important aspect which has been studied using the
RSA model is the phenomenon of percolation of polyatomic
species [16–19]. A group of adsorbed particles, occupying
more than one lattice site, forms clusters through their neigh-
boring connections. The percolation transition occurs when
such a cluster connects two opposite boundaries of the system
through a spanning path at a critical value of the surface
coverage p = pc, known as the percolation threshold. There-
fore the global connectivity exists in the system only in the
percolating phase of p > pc. The system exhibits the generic
scale-invariant features of a continuous phase transition right
at pc [20].

Furthermore, the role played by the shape and size of
the depositing particles on the morphology of the growing
structure has been studied [16,18,21–23]. Different mecha-
nisms of adsorption have also been introduced to explain
various experimental observations comprehensively [10,24–
26]. It has been revealed that the jamming density p j and
the percolation threshold pc depend nontrivially on all these
factors. However, interestingly, the critical behavior of the
system associated with the two transition points is found to be
universal, meaning that it is characterized by a universal set of
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critical exponents that is independent of all these microscopic
details. In all these cases, the percolation transition belongs to
the ordinary percolation universality class [17–19,22,25,26].
Similarly, the jamming transition is characterized by the uni-
versal exponent ν j relating to the size scaling of the width
� of the transition zone, which scales with linear size L of
the substrate in a spatial dimension d as � ∼ L−1/ν j , with
ν j = 2/d . The robustness of this universal scaling law has
been examined on the Euclidean and fractal lattice geometries
[27,28].

Although the effect of particle properties on the kinetics
of adsorption have been extensively studied in the past, a
theoretical investigation on the role of surface properties has
remained almost unexplored. In this context, some previous
studies have considered that the surface on which the ad-
sorption is taking place is not ideal. It contains defects or
impurities at random places [28–33], indicating that the bind-
ing strength of particles at these locations is so negligible
that they cannot be attached there. Except for these places
the adsorption is possible if the vacant space is large enough
to accommodate a particle. Even in this case, the universal
behavior of the RSA model is preserved. However, in many
realistic situations, a surface shows spatially correlated prop-
erties [34–36] and thus the existence of spatial correlations
among the defects is a more natural consideration than the
randomly distributed defects. Surprisingly, this aspect has not
been considered yet.

In this paper we provide a detailed study on the jamming
and percolation properties of the RSA model in the pres-
ence of spatially long-range (power-law) correlated defects.
Our main interest is to see whether this spatial correlation
affects the critical behavior of the transitions. We found that
in the regime of nonvanishing spatial correlation among the
defects, the model does not exhibit the well-known universal
features of the RSA. The critical exponents associated with
the jamming and percolation transitions are observed to vary
systematically with the strength of the spatial correlation.

II. MODEL

We consider the RSA model on a two-dimensional square
lattice of size L × L with periodic boundary conditions along
both directions. Particles in the form of k-mers, occupying k
consecutive lattice sites along horizontal or vertical direction,
are adsorbed one by one following the rules of the standard
RSA onto the lattice consisting of defects which are spatially
correlated. Specifically, the defective sites are located in such
a manner that the correlation function between a pair of de-
fected sites decays in the form of a power law of the spacial
distance between them. By imposing this prerequisite, sites
of an empty lattice are occupied with probability q and they
are kept vacant with probability 1 − q (the detailed method
for generating such a correlated landscape is described later).
The initial configuration of these sets of occupied sites acts
as defects and the adsorption of particles on these locations is
completely forbidden. The remaining 1 − q fraction of sites
acts as the site for possible adsorption. By selecting an orien-
tation, either horizontal or vertical with equal probability, one
end of the particle is placed at a randomly selected position
and absorbed irreversibly, provided that there exists at least k

consecutive vacant sites along the chosen direction from the
selected site. The surface coverage after adsorbing n particles
is thus given by p = nk/L2. The adsorption process continues
in this way until a jamming state is reached. The correspond-
ing surface coverage p = p j is referred to as the jamming
density.

During the process of adsorption, the depositing particles
interact among the previously adsorbed particles as well as
with the defects via excluded volume interaction. Conse-
quently, they experience a “screening effect” and try to align
parallel to each other and form domains whose typical sizes
are of the order of the size of the particle. In addition, due
to this interaction, a vacant region that is smaller than the
size of the particle cannot be occupied. As a result, the jam-
ming density pj cannot attain the close packing density, i.e.,
p j < 1 − q.

As an important step, besides the defect density parameter
q, the strength of the correlation among the defects is also
a tunable parameter in our model and it is characterized by
an exponent γ associated with the power-law decay of the
correlation function [see Eq. (1)]. For any arbitrary value
of 0 < q < 1, the strength of the correlation decreases with
increasing the value of γ , and in the limit of γ → ∞ the
scenario of uncorrelated defects is obtained. Therefore, by
varying the parameters q and γ , the model is capable of
capturing the behavior of a wide range of systems: from a
system with correlated defects, uncorrelated defects to a pure
(defect-free) system. In this paper we report our simulation
results for dimers (k = 2).

A. Generating long-range correlated defects

To obtain a substrate that possesses defects with spatial
long-range correlations, we utilize the idea of viewing the
substrate as a landscape of random heights {h(x)} with de-
sired height-height correlation [37], where h(x) represents
the height associated with the lattice site positioned at x.
Accordingly, we follow the scheme described in Ref. [38],
which is based on the Fourier filtering method [38–40]. The
Wiener-Khintchine theorem is the basis of this method, which
relates the autocorrelation function of a stationary time series
to the Fourier transform of its power spectrum. The power
spectral density in this case has a power-law form, and it
is calculated using the two-point correlation function c(r) =
(1 + |r|2)−γ /2, imposing periodic boundary conditions in two
dimensions. Therefore c(r) decays at large distance |r| as

c(r) = 〈h(x)h(r + x)〉 ∼ |r|−γ , (1)

where γ denotes the strength of the correlation. The steps (i)–
(iii) in Ref. [38] are then executed to generate the correlated
random numbers {h(x)}.

In our simulation we used Gaussian distributed uncorre-
lated random numbers with zero mean and unit variance to
generate power-law correlated Gaussian distributed random
numbers. To verify whether the obtained random numbers
posses the desired correlations or not, the configuration aver-
aged value of c(r) is plotted with |r| on a double logarithmic
scale in Fig. 1 for three different values of γ . Clearly, the
measured slopes of the best fitted straight lines are consistent
with the desired values of γ .
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FIG. 1. Log-log plot of the height-height correlation function
c(r) against the spatial distance |r| on a two-dimensional surface
with L = 211 using γ = 0.4 (black), 0.8 (red), and 1.2 (blue) (open
circles). By averaging over 104 independent configurations, the slope
of the fitted straight lines have been estimated as 0.408(5), 0.804(5),
and 1.206(5), respectively (arranged from top to bottom).

Finally, by following the idea of ranked surface [41], the
sites are occupied one by one according to the ascending
order of their height values until the density of occupied sites
representing the defects reaches a prefixed value q.

III. RESULTS

A. Impact on the jamming coverage

In Fig. 2 we have shown typical jamming configurations for
a given defect density q for both correlated and uncorrelated
defects. We first observe that the defects form clusters via
nearest-neighbor connections, which become more and more
compact for stronger correlations (small γ ). An idea of the
compactness of the clusters may quantitatively be realized
from the fact that in the subcritical regime of defect density,
i.e., for q < qc, where the global connectivity through the
clusters of defects is absent, the average size of the largest
cluster of defects scales with L as 〈sdef

max(L)〉 ∼ ( ln(L))α (not
shown). It is found that the exponent α > 1 for 0 < γ < d ,

(a) (b)

FIG. 2. Typical jamming configurations of dimers on a 96 × 96
lattice with periodic boundary conditions using defect density q =
0.3 for (a) uncorrelated and (b) correlated defects with γ = 0.4.
The sites with defects and the absorbed dimers have been painted
in orange squares and blue circles, respectively.

FIG. 3. The variation of filling fraction pj/(1 − q) against the
defect density q for γ = 0.4, 0.8, 1.2, 1.6 and uncorrelated defects
using L = 1024.

which monotonically decreases with increasing the value of
γ . This finally approaches α = 1, corresponding to the value
for uncorrelated defects.

Naturally, the particles experience the strongest screening
effect in the case of homogeneously distributed uncorrelated
defects during the deposition, and it recedes as the strength
of the correlation is increased. Thus we expect to observe
densely packed jamming states for stronger correlations. To
demonstrate this, the filling fraction p j/(1 − q) at the jam-
ming state is plotted against q in Fig. 3 for four different values
of γ and for uncorrelated defects. Clearly, for any given value
of 0 < q < 1, the filling fraction increases as the value of γ

decreases.

B. Universality class of the jamming transition

To investigate whether the universality class of the jam-
ming transition is affected by the introduction of spatial
correlations among the defects, we perform the scaling anal-
ysis of the width �(L) of the transition zone. Precisely, we
calculate the standard deviation of the jamming densities

�(L) =
√

〈p2
j〉 − 〈p j〉2 for several values of L, which gener-

ally scales as �(L) ∼ L−1/ν j . Therefore we plot �(L) versus
L on a log-log scale. We simulate up to L = 4096, and the
averaging was done on (at least) 5 × 106, 9.5 × 105, 1.5 ×
105, 3 × 104, and 6 × 103 independent configurations for L =
256, 512, 1024, 2048, and 4096, respectively. It is observed
that the curves for small γ have a certain amount of curva-
tures, and they seem to approach a constant value in the limit
L → ∞. We thus consider a modified functional form

�(L) = AL−1/ν j + B (2)

to fit our data. Indeed, a plot of �(L) − B against L on a
double logarithmic scale exhibits a straight line, as shown
in Fig. 4. It is found that B ≈ 0 for γ � 1.0, but its value
increases monotonically as γ is decreased. To give an idea,
the least-squares fit of our data using Eq. (2) yields the values
of (1/ν j, B) ≈ (0.97, 4.63 × 10−6), (0.95, 2.66 × 10−5), and
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FIG. 4. Plot of �(L) − B against L on a log-log scale for γ =
0.8. The slope of the best-fitted straight lines have been estimated
as 1/ν j = 0.987(2), 0.974(4), 0.962(5), and 0.944(5) for q = 0.1,
0.2, 0.3, and 0.4, respectively (arranged from bottom to top). The
corresponding values of B are smaller than B = 9.771 82 × 10−6 for
q = 0.4.

(0.92, 9.31 × 10−5) for γ = 0.8, 0.6, and 0.4, respectively,
using q = 0.2. As opposed to the case of uncorrelated defects,
for which one obtains the universal value of ν j = 1 in two
dimensions at any arbitrary value of 0 < q < 1, it is evident
from Fig. 4 that the exponent ν j varies systematically with q
for a fixed γ .

Similar plots are made, but now we keep q fixed and
vary γ . To show the effect of the spatial correlation more
explicitly, we focus on the range of q < qc, where there exists
no giant cluster of defects. It is found that the deviation of
ν j from its universal value ν j = 1 becomes more and more
prominent as γ → 0 (strong correlations). In Fig. 5 we have
displayed such a plot for three different values of q. Although
the nonuniversal behavior is not so obvious from this figure
for q = 0.05 as the exponent value is close to ν j = 1, the
curves have apparent curvatures on the �(L) vs L plots for
small γ . Precisely, the best fit using Eq. (2) yields a value of
B > 0 (e.g., B ≈ 2.1981 × 10−5 for γ = 0.4 and q = 0.05).
This suggests that a small but finite amount of defects (i.e.,

FIG. 5. Variation of the critical exponent 1/ν j associated with
the jamming transition as a function of the correlation strength γ for
q = 0.05 (black), 0.10 (red), and 0.20 (blue) (arranged from top to
bottom).

q > 0) is sufficient to change the universal behavior of the
jamming transition if and only if the defects have strong
spatial correlations.

What could be the reason behind the origin of this nonuni-
versal behavior? One may notice from Fig. 2 that for strong
spatial correlations, the void space becomes fragmented into
several isolated clusters and forms islands surrounded by de-
fects. This happens even for a small value of q (e.g., q = 0.1),
while they are less likely to be formed in the case of uncor-
related defects at such small densities. The shapes and sizes
of these islands vary for different configurations. The size
distribution appears to be broad even for q = 0.1, and the
tail of the distribution is observed to shift to the origin with
increasing γ (weak correlations). Besides that, the total num-
ber of islands also varies for different configurations. Since
the particle adsorption is occurring on these islands, one may
think that the fluctuation of the jamming densities for a given
system size L is a collective contribution of the fluctuations
arising from all those islands. Thus the variability of the island
sizes could be the source of breaking the universality class of
the jamming transition.

Arguably, such a scenario also arises at the percolation
point of void spaces in the presence of uncorrelated defects,
where the size distribution of those islands follows a scale-free
distribution. However, using extensive numerical simulations
by setting 1 − q = 0.592 746 050 (percolation threshold of
the square lattice), we have obtained the universal value of
ν j = 1 (not shown). This suggests that the departure from the
universal behavior for long-range spatially correlated defects
is probably not due to the above-mentioned fluctuations and
could be related to some more complex details, such as spatial
correlations between the sizes of the islands or the nontrivial
interactions of particles in the close proximity to the complex
inner and outer wall of the compact clusters of defects. Fur-
thermore, we have noticed that the distribution of pj deviates
from a Gaussian distribution for strongly correlated defects
for large system sizes.

C. Percolation transition of the jamming states

We now identify the clusters of absorbed dimers in the
jamming state, where a cluster consists of a set of sites
interconnected through their neighboring sites occupied by
the dimers. For q = 0, the density of occupied sites is so
high (p j ≈ 0.9068) that there always exists global connec-
tivity through a cluster spanning the entire system. On the
other hand, at q = qc, when a giant cluster of defects first
appears in the system, the largest cluster of dimers becomes
minuscule and it fails to establish such global connectivity.
Consequently, in between q = 0 and qc, one finds a threshold
value of q = qc j such that the system of dimers exhibits the
global connectivity and thus remains in the percolating phase
only when q < qc j . In the range of qc j < q < qc, neither the
largest cluster of dimers nor defects percolates. The schematic
phase diagram in q plane is shown in Fig. 6.

The most important question here is whether the critical
behavior of such a percolation transition occurring at q = qc j

belongs to the ordinary percolation universality class when
the defects have spatial long-range correlations. To investigate
this, we calculate the spanning probability �(q, L) that there
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FIG. 6. Schematic phase diagram in one-dimensional q plane.
Red and blue dots represent the critical point of percolation through
the dimers and defects, respectively. In the region between the
two dots, the system percolates neither through dimers nor through
defects.

exists a spanning cluster of adsorbed dimers in the system
by varying the value of q for three different system sizes L.
Then, by performing the finite-size scaling analysis of �(q, L)
and estimating the scaling exponents we determine the uni-
versality class of the percolation transition. Once a jamming
configuration is reached in our simulation, we check the top
to bottom connectivity through the neighboring sites occupied
by the dimers using the Burning algorithm [20] imposing
periodic (open) boundary conditions along the horizontal (ver-
tical) direction. It may be noted that the dimers adsorbed in the
isolated small islands of void space do not help in achieving
the global connectivity. Only the largest island of void space
holds a special importance for this purpose, whose size in
its percolating phase scales as 〈svac

max(L)〉 = (a + b/ ln(L))L2

(not shown). In the context of percolation of adsorbed dimers,
this may signify an effective change in the dimensionality of

FIG. 7. For γ = 0.8, (a) variation of the spanning probability
�(q, L) of the jamming configuration with defect density q for
system sizes L = 256 (black), 512 (red), and 1024 (blue) (from left
to right along � = 0.8); (b) finite-size scaling plot of the same data
using qc j = 0.4241(2) and 1/νp = 0.400(5).

FIG. 8. For γ = 1.5, (a) variation of the spanning probability
�(q, L) of the jamming configuration with defect density q for
system sizes L = 256 (black), 512 (red), and 1024 (blue) (from left
to right along � = 0.8); (b) finite-size scaling plot of the same data
using qc j = 0.3982(2) and 1/νp = 0.662(5).

the problem. In general, b > 0 for strong correlations, but its
value decreases monotonically and approaches to zero (the
value in the case of uncorrelated defects) as γ increases.

In Fig. 7(a), the variation of the spanning probability
�(q, L) against q has been shown for γ = 0.8. By appropri-
ately scaling the horizontal axis, when the same sets of data
are replotted against (q − qc j )L1/νp we observe a nice data
collapse [Fig. 7(b)], implying the finite-size scaling form

�(q, L) ∼ F[(q − qc j )L
1/νp], (3)

where νp is recognized as the correlation length expo-
nent of the percolation transition. The analysis yields qc j =
0.4241(2) and 1/νp = 0.400(5) for γ = 0.8. We have also
shown similar plots for γ = 1.5 in Figs. 8(a) and 8(b). In
this case we obtained qc j = 0.3982(2) and 1/νp = 0.662(5).
It is evident that these exponent values are distinctly different
from the value of 1/νp = 0.75 for uncorrelated defects, for
which such a transition belongs to the ordinary percolation
universality class in two dimensions.

Repeating these analyses for many different values of
γ , we see that the critical exponent 1/νp increases with
increasing γ and approaches to 1/νp = 3/4, as shown in
Fig. 9(a). This dependency is approximately described by a re-
lation νp = 2/γ in the range of γ = 0.6–1.0. The percolation
threshold qc j (γ ) decreases with increasing γ and approaches
0.3180(5), the value for uncorrelated defects, as shown in

042134-5



SUMANTA KUNDU AND DIPANJAN MANDAL PHYSICAL REVIEW E 103, 042134 (2021)

FIG. 9. Variation of (a) the critical exponent νp associated with
the percolation transition of the jamming states and (b) the percola-
tion threshold qc j as a function of γ .

Fig. 9(b). Note that our results for uncorrelated defects are in
good agreement with the previous numerical data in Ref. [32].
The data used for all these plots are based on averages over (at
least) 106, 5 × 105, and 7 × 104 samples for L = 256, 512,
and 1024, respectively. Therefore we believe that the above
estimates are reasonably accurate.

D. Percolation transition before jamming

We have seen that for a given value of γ , the defect
density q = qc j (γ ) separates between the percolating and
nonpercolating jamming states. Specifically, all the jamming

FIG. 10. For γ = 0.8, q = 0.1, (a) the spanning probability
�(p, L) has been plotted against the surface coverage p for system
sizes L = 256 (black), 512 (red), and 1024 (blue) (from left to right
along � = 0.2). (b) Finite-size scaling of the same data as in (a) us-
ing pc = 0.535 95(3) and 1/ν = 0.488(5).

FIG. 11. For γ = 0.8, q = 0.1, (a) variation of the order pa-
rameter �(p, L) against the surface coverage p for system sizes
L = 256 (black), 512 (red), and 1024 (blue) (from left to right along
� = 0.2). (b) Finite-size scaling of the same data as in (a) using
pc = 0.535 95(3), 1/ν = 0.488(5), and β/ν = 0.104(1).

configurations for q < qc j (γ ) with density p j (γ , q) percolate
in the limit of asymptotically large system sizes. This suggests
that for all values of q < qc j (γ ) there should be a critical
value of p = pc(γ , q) such that the system exhibits global
connectivity for pc(γ , q) � p � p j (γ , q).

In Fig. 10(a) we have plotted the spanning probability
�(p, L) against the surface coverage p for three different sys-
tem sizes using γ = 0.8 and q = 0.1. These curves cross each
other approximately at a single point [pc(γ , q),�(pc)]. From
visual inspection, we estimate that pc(0.8, 0.1) = 0.535 95(3)
and �(pc) ≈ 0.57, which is quite lower than the value
0.636454001 of the crossing probability on a cylindrical ge-
ometry obtained using Cardy’s formula [42,43] for defect-free
systems. It is to be noted that the crossing probability �(pc) ≈
0.64 has been obtained even for the system with uncorre-
lated defects. Now a finite-size scaling of the same data
is performed. A plot of �(p, L) against the scaled variable
(p − pc(γ , q))L1/ν exhibits the data collapse for all three sys-
tem sizes [Fig. 10(b)], implying the scaling form

�(p, L) ∼ F[(p − pc(γ , q))L1/ν]. (4)

In percolation problems, the average size of the largest clus-
ter per site is considered as the order parameter �(p, L) =
〈smax(p, L)〉/L2, where smax represents the size of the largest
cluster of absorbed dimers. In Fig. 11(a) we have shown the
variation of �(p, L) against p for the same three system sizes.
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TABLE I. Our numerical estimates of the percolation threshold
pc(γ , q) for different values of the defect density q and the correla-
tion strength γ . The numbers in the parentheses represent the error
bars in the last digit.

γ q pc(γ , q) 1/ν β/ν

0.6 0.01 0.55965(3) 0.71(1) 0.105(1)

0.01 0.56022(3) 0.718(5) 0.104(1)
0.8 0.05 0.54986(3) 0.587(5) 0.104(1)

0.10 0.53595(3) 0.488(6) 0.104(1)

0.01 0.56083(2) 0.735(5) 0.104(1)
1.2 0.05 0.55362(2) 0.671(6) 0.105(1)

0.10 0.54329(3) 0.621(5) 0.104(1)

Again, by appropriately scaling the abscissa and ordinate, and
replotting the data we observe data collapse of �(p, L), as
shown in Fig. 11(b), indicating the scaling form

�(p, L)Lβ/ν ∼ G[(p − pc(γ , q))L1/ν]. (5)

The finite-size scaling analysis yields pc(0.8, 0.1) =
0.535 95(3), 1/ν = 0.488(5), and β/ν = 0.104(1). These
values are compared with the known critical exponents for
ordinary percolation in two dimensions, which are 1/ν = 3/4
and β = 5/36.

The above set of calculations has been repeated for dif-
ferent (γ , q) pairs. Interestingly, we found that the critical
exponent 1/ν depends systematically with q and γ , whereas
β/ν always appears to be same as the value of the ordinary
percolation in two dimensions, i.e., β/ν = 5/48. The esti-
mated values for different (γ , q) pairs are listed in Table I.
For strong correlations (γ � 0.6) and high q, it is observed
that the crossing points of the curves for �(p, L) vary over a
much wider range. In these cases, the two-parameter scaling
plot does not exhibit an excellent data collapse as seen for
γ � 0.8. Probably, logarithmic corrections are responsible for
this. Further investigations using higher system sizes are thus
needed for a precise understanding of this problem.

IV. CONCLUSIONS

We have investigated the percolation and jamming proper-
ties of the random sequential adsorption of dimers on square
lattices in the presence of defects with spatial long-range
correlations. Accordingly, a fraction q of the lattice sites are
declared as defects, where the deposition of dimers is com-
pletely forbidden. The dimer adsorption takes place randomly
at the available vacant space. The correlation strength among
the defective sites is varied, and its impact on the jamming
and percolation transitions has been studied using extensive
numerical simulations.

It has been observed that the jamming coverage for any
arbitrary value of 0 < q < 1 is increased with increasing cor-
relation strength. More importantly, for strong correlations the
jamming transition is found to be nonuniversal, even when

q is much smaller than its threshold value qc such that the
connected clusters of defects are all minuscule. A continu-
ously tunable value of ν j characterizes the jamming transition,
which approaches its universal value ν j = 1 in two dimen-
sions with decreasing correlation strength.

The percolation transition of the absorbed dimers takes
place at a critical density of occupied sites pc only when
the defect density is smaller than a critical value q = qc j .
The percolation threshold pc has been found to be dependent
on the defect density as well as the strength of the spatial
correlations. For a given defect density, pc decreases as the
correlation strength is increased. Moreover, the finite-size
scaling analysis reveals that the transition does not belong
to the ordinary percolation universality class. The correlation
length exponent ν changes systematically with the strength of
the spatial correlation and approaches its universal value 4/3
in two dimensions when the defects become weakly corre-
lated. Remarkably, the ratio of the exponents β/ν associated
with the order parameter scaling appears to remain the same
as the ordinary percolation.

Finally, by tuning the defect density q, a percolation tran-
sition is observed at q = qc j which separates the percolating
jamming states from the nonpercolating ones. Again, the per-
colation transition is characterized by a nonuniversal value
of the correlation length exponent, which is found to be de-
pendent on the strength of the spatial correlation among the
defects.

In the future, apart from the obvious generalization of
this model by considering different shapes and sizes of the
particles on different lattice geometries or in higher dimen-
sions, one may find it interesting to study precursor-mediated
adsorption in such a correlated disordered environment. We
are hopeful that the results presented here will provide a
framework for understanding various observations in different
experimental conditions more coherently, since by tuning the
parameters (q and γ ) of the model a system resembling the
real one may be devised.
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