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Recent observation studies have revealed that earthquakes are classified into several

different categories. Each category might be characterized by the unique statistical

feature in the time series, but the present understanding is still limited due to their

non-linear and non-stationary nature. Here we utilize complex network theory to shed

new light on the statistical properties of earthquake time series. We investigate two

kinds of time series, which are magnitude and inter-event time (IET), for three different

categories of earthquakes: regular earthquakes, earthquake swarms, and tectonic

tremors. Following the criterion of visibility graph, earthquake time series are mapped

into a complex network by considering each seismic event as a node and determining

the links. As opposed to the current common belief, it is found that the magnitude

time series are not statistically equivalent to random time series. The IET series exhibit

correlations similar to fractional Brownian motion for all the categories of earthquakes.

Furthermore, we show that the time series of three different categories of earthquakes

can be distinguished by the topology of the associated visibility graph. Analysis on

the assortativity coefficient also reveals that the swarms are more intermittent than

the tremors.

Keywords: earthquakes, time series analysis, visibility graph, networks, complex system

1. INTRODUCTION

1.1. Network-Theoretical Time Series Analysis
Inspired by the exceptional success of the network theory in recent years [1–7], the analysis of
time series from the perspective of complex network has received considerable attention due to the
standing requirement of understanding the dynamical processes behind time series data [8–12].
Often a real-world time series arises from non-linear processes and their precise identification is
important for modeling purposes. Recently, a merging trend has been observed coupling ideas both
from the field of non-linear time series analysis and complex network theory [13]. If a time series
is mapped into a complex network, one may expect that such a network reflects some inherent
properties of the original time series. Thus, one can utilize the recent graph-theoretical tools to
extract novel properties hidden in the time series.

Among several other methods [11, 12], the visibility graph [10] has become popular due to its
simplicity and wide range of applicability. This method has demonstrated its potential in extracting
several characteristic features of the time series such as the periodicity, fractality, chaoticity,
non-linearity, and more [10, 14, 15]. A merit of the visibility graph method is its ability to capture
non-trivial correlations in non-stationary time series without introducing elaborate algorithms

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.656310
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.656310&domain=pdf&date_stamp=2021-04-29
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sumanta492@gmail.com
https://doi.org/10.3389/fphy.2021.656310
https://www.frontiersin.org/articles/10.3389/fphy.2021.656310/full


Kundu et al. Correlations in Earthquake Time Series

such as detrending. For instance, it has been shown that the
visibility graph corresponding to the time series generated from
a fractional Brownian motion (fBm) is scale-free. Moreover, the
exponent γ for the degree distribution corresponds to the Hurst
exponent (H) of the fBm as [16]:

γ = 3− 2H. (1)

Since the fBm generates f−β power spectrum with β = 1 + 2H,
the exponent γ of the visibility graph should correspond to β as

γ = 4− β . (2)

The network-theoretical method enables us to estimate H and
β more easily than other standard methods such as calculating
power spectrum [16]. Therefore, it has been applied to extract
the fBm-like nature of time series in several contexts such as
finance [17], health science [18, 19], image processing [20], and
geophysics [21, 22].

In this paper, we study the nature of correlation in earthquake
time series by means of visibility graph. In particular, we focus on
the two important quantities: the magnitude and the inter-event
time (IET) between two consecutive earthquakes.

1.2. Characteristics of the Seismic
Sequences: Three Categories of
Earthquakes
Thanks to the continuous progress in observation technologies,
various kinds of earthquakes have been known to date. Aiming
at the statistical characterization of earthquakes belonging to
different categories, here we choose to analyze three well-
established categories: regular earthquakes, earthquake swarms,
and tectonic tremors. The fundamental difference among these
three categories lies in their generation mechanisms and the time
scale of energy release.

A time series of regular earthquakes includes mainshock-
aftershock sequences and the background activity. While the
latter is a Poissonian process, the former is generally clustered
in space and time. Aftershocks are triggered usually by the
static stress change associated with the mainshock, as well as
some other post-seismic relaxation processes such as afterslip
or fluid flow. Major fraction of the total energy is released
almost instantaneously at the time of the mainshock and slowly
decreases in time. It is observed that the magnitude-frequency
distribution P(M) obeys an exponential distribution, namely, the
Gutenberg-Richter (GR) law [23]: P(M) ∝ 10−bM , with b taking
a value around 1 in the active fault zones [24]. On the other hand,
the temporal decay of the frequency of aftershocks is described
by the Omori–Utsu law [25, 26].

The same phenomenology is not observed for the other two
categories of earthquakes. In contrast to mainshock-aftershock
sequence, a seismic swarm is defined as a cluster of earthquakes
with similar magnitudes, which usually occur in a volcanic or
geothermal tectonic setting. The intrusion of fluids can reduce
the resistance of faults and redistribute the stress in such a
manner that the energy is released gradually and almost equally

among the largest shocks [27]. The Omori-Utsu law does not
generally hold for swarms.

Tectonic tremors represent weak and repetitive seismic signals
emitted from a plate boundary in a subduction zone. To the
current belief, fluids generated by slab dehydration may be a
cause of tremors [28]. Similar to swarm earthquakes, the tectonic
tremor activity is characterized by hypocentre migration but on
a different spatial and temporal scale: tremors migrate up to
several hundreds kilometers, whereas swarms are more local. The
statistical laws are largely unknown for remors.

1.3. Outline of the Paper
Based on the analysis of the visibility graph, we argue against the
current popular belief that earthquake magnitude time series are
indistinguishable from random time series. The same method
is applied for the IET time series, showing fBm-like correlation
clearly. We also show that the time series of three different
types of earthquakes can be distinguished in the topology of the
associated visibility graph.

The paper is organized as follows. We start by describing the
visibility graph algorithm and the characteristics of the three
categories of earthquakes including the specifications of the
studied seismogenic zones in section 2. The existence of memory
in the time series of magnitudes and IETs have been investigated
in sections 3 and 4, respectively. We discuss the topology of the
visibility graph for both magnitude and inter-event time series in
section 5. Finally, we summarize in sections 6 and 7.

2. METHODS

2.1. Construction of Visibility Graph From
Seismic Catalog
Given the time sequence of the occurrence of seismic events,
the visibility graph is constructed by considering each event
as a node and linking the nodes based on mutual visibility of
the corresponding data heights. The data recorded at time tk is
represented as the height hk of the k-th node. Specifically, any
arbitrary pair of data values (ti, hi) and (tj, hj) (ti < tj) are visible
to each other if the straight line joining the two data points
does not intersect any intermediate data heights, as illustrated
in Figure 1.

If there exists visibility, the slope sij of the line between the
nodes i and j must be the maximum of the slopes sik for all
i < k < j. Therefore, a link is placed between two nodes i and j in
the visibility graph if and only if for all ti < tk < tj the following
criterion is satisfied:

hk < hi + (hj − hi)
tk − ti

tj − ti
. (3)

Clearly, every node is visible at least from its left and right nearest
neighbors and thus one obtains a completely connected network.

The “divide & conquer” algorithm [29] has been used to
efficiently transform a time series into its corresponding visibility
graph. This algorithm takes advantage of the fact that the node
with the maximum height divides the time series into two
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segments in the sense that the nodes situated at one side of the
maximum are not visible from the another side. Therefore, it is
not required to check the visibility between the two sides of each
separated segments. In each step, the visibility of the node with
the maximum height to the other nodes at its right and left sides
is determined. Each new segment is then treated independently
and the same procedure is repeated until every segment contains
one single node. The CPU time taken by the algorithm scales with
the size N of a time series as N logN.

2.2. Description of the Seismic Catalog
In a seismic catalog, an event is described by the location of the
hypocenter, the time of occurrence, and the magnitude (M). We
select several representative regions from Japan and California
since these two areas are well-known for intense seismic activity
and dense monitoring networks. The catalog data we analyze
here are provided by the Japanese Meteorological Agency1, the
Hot Spring Research Institute [30], the Southern California
Earthquake Center [31], the World Tremor Database [32], and
Slow Earthquake Database [33], respectively.

1ftp://ftp.eri.u-tokyo.ac.jp/pub/data/jma/mirror/JMA_HYP/

FIGURE 1 | Visibility graph representation of a synthetic time series with 20

data values drawn randomly from an exponential distribution, where ti = i is

the time t corresponding to the i-th data. Each vertical bar representing the

height variable h is considered as a node and if the top of one bar is visible

from the top of the another then a link is placed between the corresponding

pair of nodes.

A selected region is described by the minimum and the
maximum of the latitude (θ) and longitude (φ) coordinates, i.e.,
the values of (θmin,φmin) and (θmax,φmax). We consider only
the crustal events within the depth of 50 km. For the regular
and the swarm earthquakes, we also indicate the magnitude of
completeness Mc i.e., the lowest magnitude above which the GR
law holds. Above this completeness magnitude, missing events in
a catalog should be rare and therefore, effects of missing events
should be minimized. We determined these values using the
Zmap software tool [34]. For tremors, we consider all detected
events recorded in the two previously mentioned database [35,
36]. The total number of events in a catalog is denoted byNt . The
detailed specifications of these catalogs data are given in Table 1.

2.3. Remarks on Regional Specifics
For time series of regular earthquakes, we analyzed three active
seismic regions located in different tectonic settings: subduction,
compression, and active faulting. The region named Tohoku
corresponds to an offshore area of the Japan Trench subduction
zone where the 2011 earthquake of moment magnitude Mw9.0
and its aftershocks were recorded. Time series before and
after the Mw9.0 event are referred here as Tohoku1 and
Tohoku2, respectively. The Southern California region is located
in a complex compressional tectonic setting dominated by
the southern part of the San Andreas Fault system, but also
includes earthquakes generated by the slow uplifting of the Sierra
Nevada Mountain range, as well as volcanic and geothermal
related activity. The Kumamoto region mostly includes the
recent seismic activity generated by the 2016 Mw7.0 Kumamoto
earthquake around the active Futagawa-Hinagu fault and the
surrounding active volcanic region of Aso-Yufuin-Beppu. Thus,
most earthquakes in the Kumamoto catalog are aftershocks.
In the Hakone volcanic region, significant swarm activity was
detected since 2001 [37]. Although many different swarm
episodes were recorded, they don’t exhibit any specific temporal
pattern. An increase in the seismicity level was observed in
2015 due to a volcanic eruption [38]. The Izu volcanic region
is characterized by magma-intrusion episodes which generate
frequent swarm activity [39]. Concerning the tremor activity, we
selected two areas where the largest number of detected events
is available, such as Cascadia in North America and Shikoku
around the Nankai Trough in Japan.

TABLE 1 | The summary of the catalog data analyzed for investigating the correlations between the earthquake events.

Earthquake type Region θmin φmin θmax φmax Period Mc Nt

Regular Tohoku 34.00 135.00 42.00 145.0 01/01/2000–30/11/2019 2.0 147021

Kumamoto 32.40 130.40 33.40 131.6 01/01/2000–30/11/2019 1.0 44486

Southern California 30.00 –124.00 39.00 –111.0 01/01/1990–08/12/2019 1.5 222491

Swarm Hakone 35.15 138.90 35.35 139.1 06/04/1995–03/10/2015 0.1 16279

Izu 34.60 138.95 35.15 139.5 01/01/1995–30/11/2019 0.0 38657

Tremor Shikoku 33.66 131.61 34.28 134.5 01/04/2004–01/09/2016 77701

Cascadia 37.50 –118.20 51.00 –128.7 09/01/2005–30/12/2014 30084
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FIGURE 2 | Log-log plot of the binned data for degree distribution p(k)

associated with the magnitude time series (A) Tohoku1 and (B) Tohoku2 for

network sizes N = 210 (black), 211 (red), 212 (blue), and 213 (green). (C) The

variation of the average maximum nodal degree 〈kmax(N)〉 with N on a lin-log

scale for Tohoku1 (black) and Tohoku2 (red) using N = 29 to 214. The fit (solid

line) of the data points by a straight line indicating the logarithmic growth of

〈kmax(N)〉.

3. ANALYSES ON MAGNITUDE TIME
SERIES

3.1. Stretched Exponential Nature of
Degree Distribution
To investigate whether the magnitude of earthquakes has any
correlations, we study the degree distribution of the visibility
graph constructed from the magnitude time series.

First we check if the degree distribution is power law.
Typically, a power law distribution is characterized by a long tail
that develops with the network size N in such a manner that the
average maximum nodal degree 〈kmax(N)〉 grows as 〈kmax(N)〉 ∝
Nα . This signifies the existence of power-law degree distribution

for the infinitely large network, N → ∞. In order to do this
analysis, the original time series is divided into several segments
such that each segment contains exactly N number of events.

We start with our results for regular earthquakes in the
Tohoku region. Since the period of Tohoku2 is exceptionally
active after the occurrence of the magnitude 9.0 earthquake, we
have analyzed the data for Tohoku1 and Tohoku2 separately. In
Figures 2A,B, the degree distribution of the visibility graph is
shown on a double logarithmic scale for four values of N starting
from 210 to 213, at each step N being increased by a factor of
2. For all the four values of N in both the cases (Tohoku1 and
Tohoku2), the curves have certain amount of curvature and the
tails of the degree distributions do not elongate significantly as N
increases. To see this dependence more clearly, we have plotted
the average maximum nodal degree 〈kmax(N)〉 against N on a
semilog scale in Figure 2C. Clearly, this implies that 〈kmax(N)〉 ∼
lnN, demonstrating that the degree distribution is not a power
law: namely, the absence of fBm-like structure in the magnitude
time series.

Specifically, the degree distribution appears to follow a
stretched exponential function:

p(k) = Ae
−

(

k
k0

)τ

(4)

In Figure 3A, we have plotted the degree distribution p(k) of
the visibility graph on a log-log scale for the whole time series
of Tohoku1 and Tohoku2 containing 55824 and 91197 events,
respectively. The logarithmically binned data for both the series
fits quite well with the above functional form in the range of k
between 6 to approximately 100. This is shown more explicitly in
Figure 3B, where p(k) is replotted against kτ on a semilog scale.
The curves are straight in the intermediate region, indicating
that the distribution follows an exponentially decaying function
of kτ . This behavior is also evident from the cumulative degree
distribution shown in Figure 3B (inset).

To confirm the ubiquity of the stretched exponential nature
of degree distribution, we analyze the other six earthquake
catalogs. Figure 4 shows degree distributions presented similarly
to those in Figure 3B for Southern California (regular), Hakone
(swarms), and Shikoku (tremors). Apparently, these degree
distributions are fitted with the stretched-exponential function
irrespective of the region or the earthquake type. The cumulative
degree distributions are also shown in Figure 4 (inset).

Furthermore, two important points should be remarked
regarding the robustness of the above result. First, the stretched
exponential nature does not significantly change even when the
cutoff magnitudeMc is set to be lower or slightly higher than the
completeness magnitude: Namely, the result is rather insensitive
to some undetected smaller events. This may be because the
tail of the degree distribution is controlled by events of larger
magnitude, which generally have higher visibility. Second, we
confirm that the shape of degree distribution is unaltered even if
the time series is with respect to the event index instead of the
real occurrence time. Namely, the degree distribution remains
stretched exponential even if the event time ti is replaced by an
integer i in the visibility criterion, Equation (3).

Frontiers in Physics | www.frontiersin.org 4 April 2021 | Volume 9 | Article 656310

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Kundu et al. Correlations in Earthquake Time Series

FIGURE 3 | (A) Log-log plot of the binned data (open circles) for degree

distribution p(k) of the whole magnitude time series Tohoku1 (black) and

Tohoku2 (red). The solid lines are the fit of the corresponding data using

Equation (4) whose parameters are A = 195.0 and 57.68, 1/k0 = 210.0 and

51.03, and τ = 0.284. and 0.325, respectively. The data for Tohoku2 has been

shifted vertically for visual clarity. (B) Plot of the same data against kτ , with k

being the degree of the nodes, on a semilog scale exhibits a straight line in the

intermediate regime. Inset: log-log plot of the cumulative degree distribution

P(k) for the corresponding data sets.

3.2. Degree Distribution for Shuffled Data
Hereafter we refine the analysis and argue if there are any
other correlations in the magnitude time series. To this end,
we first analyze the visibility graph produced from the shuffled
time series. Namely, by randomly choosing a pair of events,
their respective magnitudes are swapped. This process is
repeated by Nt times (the number of events in the catalog),
leading to one shuffled sequence. This procedure preserves
the probability density function of magnitude but destroys
any potential correlations between them. Then, for a shuffled
sequence, the visibility graph is constructed and the degree
distribution is calculated. This process is repeated for many
times and the degree distributions are averaged over these
shuffled sequences. The averaged degree distribution is shown
in Figure 5 (main panel). This is again fitted with the stretched
exponential distribution. The same is true for the degree
distribution of each shuffled sequences, and the curves are not
distinguishable from the original time series (inset of Figure 5).
This again validates the absence of fBm-like correlations in the
original sequence.

FIGURE 4 | Plot of the degree distribution p(k) against kτ , with k being the

degree of the nodes, on a semilog scale for the time series of Southern

California (black), Hakone (red), and Shikoku (blue). The τ values are 0.364,

0.364, and 0.280, respectively. The plot indicates exponential decay of all the

curves. For visual clarity, a linear shift is given to the black curve [p(k) = p(k)/2].

Inset: log-log plot of the cumulative degree distribution P(k) for the

corresponding data sets displaying systematic curvatures of the curves.

FIGURE 5 | Main panel: Semilog plot of the degree distribution, p(k) vs. kτ ,

with k being the degree of the nodes, for the shuffled series corresponding to

Tohoku1 (black) and Tohoku2 (red). The plot is based on 106 independent

shuffled series. Inset: Log-log plot of the cumulative degree distribution P(k) for

six individual shuffled series of Tohoku1 (different colors are used to represent

different shuffled series) along with the original one (black).

3.3. Kolmogorov-Smirnov Test
More importantly, however, the above analysis does not mean
that there are no correlations in earthquake magnitude, since
the averaging process may mask some subtle short-range
irregular correlations. To scrutinize the statistical difference in
the visibility graph structure of the original and the shuffled
time series, we perform the Kolmogorov-Smirnov (KS) test. Here
the null hypothesis is that two empirical degree distributions
originate from the same function for the original time series and
its shuffled sequence. We adopt the 0.05 significance level and
reject this null hypothesis if the p-value is smaller than 0.05.
In this formulation, rejecting the null hypothesis means that
the degree distributions are different for two visibility graphs
produced from the original time series and its shuffled one.
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FIGURE 6 | Normalized frequency distribution of the p-values computed from the KS test statistic between two degree distributions: (A,C) Comparison of degree

distributions for the original time series and its shuffled ones. (B,D) Comparison of degree distributions for two shuffled time series obtained from a given original time

series. In each panel, the data is obtained from 104 shuffled series. The upper and lower panel correspond to the time series of Tohoku1 and Cascadia, respectively.

FIGURE 7 | Plot of the degree distribution p(k) against kτ with τ = 0.36 for the

visibility graph associated with a random time series of N = 220 exponentially

distributed data values on a semilog scale for λ = 1 (black), 2 (red), and 3 (blue).

Specifically, the KS test statistic is computed as a distance
between two empirical degree distributions produced from the
original time series and its shuffled one. Then the p-value is
calculated from the distance. This procedure is repeated for
many shuffled sequences to yield the distribution of the p-value.
They are shown in Figure 6A for Tohoku1 (regular earthquakes)
and Figure 6C for Cascadia (tremors). Apparently, the null
hypothesis is rejected for both the cases. Namely, the degree
distributions are not the same for the original time series and
the shuffled surrogates. We also find that the null hypothesis is

rejected for all the other catalogs shown in Table 1. This implies
that the visibility structure in the original time series is somewhat
altered if shuffled. In other words, the original time series can be
discriminated among many other shuffled data.

To support the above statement from another aspect, we
again perform the KS test by comparing a specific shuffled time
series with many other shuffled ones. The distribution functions
for the p-value are shown in Figures 6B,D. In this case, the
null hypothesis is not rejected at the 0.05 significance level.
Namely, shuffled time series are indistinguishable in terms of the
degree distribution of their visibility graphs. This makes a quite
contrast to the original time series, which is distinguishable from
shuffled ones.

3.4. Analyses on Three Other Surrogates
In addition to shuffled time series investigated above, we inspect
three other surrogate data. The first and the second ones are the
random time series, in which the height values {hi} are drawn
randomly and independently from an exponential distribution
p(h) ∼ e−λh between [2, 9]. For the first surrogate data, the time
is set to be the event index: i.e., ti = i for the i-th event. Note
that λ is proportional to the b-value in the GR law as λ = 2.303b.
In Figure 7, the degree distribution p(k) are shown for several
values of λ. Each curve is seen to follow the stretched exponential
form. Similar to the original earthquake data, 〈kmax(N)〉 grows
logarithmically with N (not shown). This makes a contrast to
the exponential degree distribution observed for the uniformly
distributed heights [10].
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FIGURE 8 | (A) Plot of the height distribution p(h) of the time series generated

from the Brownian motion of a particle confined in a linear potential U(x) = c|x|
on a semilog scale for c = 1 (black), 2 (red), and 3 (green). The slopes of the

curves are found to be 1.98(3), 3.95 (3), and 5.98(3), respectively. (B) Log-log

plot of the degree distribution p(k) of the visibility graph corresponding to the

time series of c = 1 for N = 216 (black), 218 (red), 220 (green), and 222 (blue).

The dotted line is the guide to the eye with slope 2.01. The results are based

on the averages of at least 103 independent trajectories.

The second surrogate data is the Poisson model, where events
occur according to the Poisson process, and the height values
are again drawn randomly from the GR law. We confirm that
this surrogate data also produces the stretched exponential degree
distribution. However, in the KS test that compares the surrogate
data and the original magnitude series, the null hypothesis is
rejected. Namely, they don’t yield the same degree distribution.

The third surrogate data we wish to inspect is a time series
with a short memory. Here the time series is generated by
simulating a Brownian particle in one dimension subjected to a
linear potential: U(x) = c|x|. Starting from x = 0 at time t = 0,
the position of the particle is updated in steps of dt = 10−6

according to the following Langevin equation:

x(t + dt) =

{

x(t)− cdt +
√
dtξ for x > 0,

x(t)+ cdt +
√
dtξ for x < 0,

(5)

where ξ is a Gaussian white noise with zero mean and unit
variance. The height distribution for x(t) follows the Boltzmann-
Gibbs distribution at equilibrium. Since the potential is linear, the
distribution function is exponential, as confirmed in Figure 8A.
We construct the visibility graph using the time series of x(t) and
compute the degree distribution. As shown in Figure 8B with

FIGURE 9 | (A) Log-log plot of the cumulative degree distribution P(k) for the

IET series of Tohoku1 (black) and Tohoku2 (red). The slope of the curve in the

fitted region (solid line) has been estimated as 1.34(5) and 1.60(8), respectively.

(B) The degree distribution p(k) shown as a function of kτ with k being the

degree of the nodes for shuffled sequences of the corresponding data on a

semi-log scale. Here the exponent τ is estimated as 0.30 and 0.28,

respectively.

four different system sizes N, the degree distribution is observed
to follow a power law. Additionally, we confirm that 〈kmax(N)〉
grows as a power-law with N: i.e., 〈kmax(N)〉 ∼ N0.486(5) (not
shown). This signifies that a systematic single step memory in the
time series leads to a scale-free network.

All the findings above lead us to conclude that the time
series of earthquake magnitude are not statistically identical
to uncorrelated time series, although no apparent systematic
memories exist, either long-ranged (fBm-like) or short-ranged.

4. CORRELATION BETWEEN THE
INTER-EVENT TIMES

4.1. Power-Law Nature of Degree
Distribution for Tohoku Data
To characterize the temporal correlations between seismic events
and to understand whether they are dependent on specific details
of the seismic activity, we focus on studying the inter-event
time (IET) series of earthquakes. Here the IET series is obtained
from an earthquake catalog by calculating time intervals between
two consecutive events and labeling them with the event index
i. Namely, the IET series is represented as (i, hi), where hi =
ti+1 − ti, and ti is the real occurrence time of the i-th event in a
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catalog. Here the threshold is set as the completeness magnitude
Mc (listed in Table 1).

Figure 9A shows the cumulative degree distribution P(k) for
the IET series of Tohoku1 and Tohoku2. This is the probability
of finding a node with degree at least k in the visibility graph.
For both the cases, the degree distribution is found to be heavy-
tailed distribution and the tail extending more than one decade
can be described by an approximate power law. We estimate the
exponent: γ = 2.34(5) for the Tohoku1 and γ = 2.60(8) for
the Tohoku2. The average maximum nodal degree also varies as
a power law: 〈kmax(N)〉 ∼ kα , where α = 0.77(3) and 0.53(4)
for the Tohoku1 and Tohoku2, respectively (not shown here).
This behavior supports the power law nature of the degree
distribution. Thus, the visibility graphs constructed from the IET
series exhibit typical signatures of a scale-free network, indicating
the existence of fBm-like correlations in the time series.

To validate the presence of correlation in a contrasting
manner, we analyze the shuffled sequences of the IET data and
find that the degree distribution p(k) is fitted with the stretched
exponential function given in Equation (4). In Figure 9B, the
degree distributions p(k) are plotted with kτ for the shuffled IET
series of Tohoku1 and Tohoku2. The straight line here confirms
the stretched exponential form of the degree distribution. In
addition, we find that 〈kmax(N)〉 ∼ lnN (not shown). Evidently,
the shuffled data produces the properties of a random time series
and therefore provides evidence on the existence of correlation in
the original time series.

4.2. Power-Law Nature of Degree
Distribution: Other Regions
The same analyses are carried out for regular earthquakes in
different regions, as well as for swarms and tremors. The results
are shown in Figure 10. In Figures 10A–C, the cumulative degree
distribution is plotted for regular earthquakes, swarms, and
tremors. For every case, a heavy-tailed distribution has been
observed. While for regular earthquakes and tremors a power
law regime extending more than one decade is quite apparent,
the data for swarms shows more complex behavior. However,
an approximate power law variation can fit the data in the
intermediate region. For each case, the data points in the most
linear regime (estimated by eyes) starting from a moderate value
of k to a value at the tail part upto which they do not fall-off
due to the limitations by finite size are fitted to the best straight
line. From the slope of the straight line, we estimate the power-
law exponent γ as 1.73(8), 2.64(5), 1.81(9), 1.79(9), 2.51 (5), and
2.13(5) for Kumamoto (regular), Southern California (regular),
Hakone (swarm), Izu (swarm), Cascadia (tremor), and Shikoku
(tremor), respectively. In addition, the power law dependence of
the average largest degree 〈kmax(N)〉withN has been observed for
every set of data (not shown), supporting the power law nature of
the degree distribution.

The tail part of the degree distribution is characterized by the
exponent γ , which seems to depend on the seismic activity of the
specific region: (i) Earthquake swarms (Izu and Hakone) have a
common value, γ ≃ 1.8. (ii) Regular earthquakes may also have
a common value, γ ≃ 2.6 (Tohoku2 and Southern California),

FIGURE 10 | Log-log plot of the cumulative degree distribution P(k) for the IET

series of different types of earthquakes: (A) regular earthquakes in Kumamoto

(black) and Southern California (red); (B) swarms in Hakone (black) and Izu

(red); (C) tremors in Cascadia (black) and Shikoku (red). The slopes in the fitted

region (solid line) are 0.73(8), 1.64(5), 0.81(9), 0.79(9), 1.51(5), and 1.13(5),

respectively.

while it is somewhat smaller (2.3) before the Tohoku Mw9.0
earthquake (Tohoku1). (iii) Kumamoto is exceptional with γ ≃
1.7. This value is rather close to swarms, although the data mainly
consist of aftershocks of 2016 Kumamoto earthquake. There may
be two reasons for this discrepancy. First, the data is not a
usual mainshock-aftershocks sequence, but rather a foreshocks-
mainshock-aftershocks sequence. Alternatively, we may interpret
it as two mainshocks (Mw6.2 and 7.0) that occurred within only
30 h. In any case, it is rather anomalous seismic activity. The
second potential reason is an active volcano (Mt. Aso) located in
the proximity of the main fault. The Mw7.0 mainshock triggered
many earthquakes in the volcanic area, including anMw5.9 event
and its own aftershocks. Thus, the overall seismic activity is
influenced by the nearby volcanic field and this may explain the
resemblance to swarms.
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If we suppose the relation between the fractional Brownian
motion and the power-law degree distribution, i.e., Equation (2),
the exponent for the power spectrum β can be determined. For
example, swarms have β ≃ 2.2 and H ≃ 0.6. They are close
to those for standard Brownian motion (β = 2 and H = 0.5)
but yet slightly larger, corresponding to superdiffusion. Regular
earthquakes (γ ≃ 2.6) have β = 1.4 andH = 0.2, corresponding
to subdiffusion. Extraction of these exponents from actual
seismic data is difficult using other standard methods such
as autocorrelation functions due to the strong non-stationary
nature of the seismic record. In this sense, these exponents might
not be considered as that for fBM itself, but should represent
some counterpart in seismic activities.

Shuffled time series again yield visibility graphs with their
degree distributions of stretched-exponential form, resembling
the properties of a random time series. Therefore, we confirm that
the original IET series possess fBm-like correlations irrespective
of the earthquake types: regular, swarms, and tremors. This result
does not contradict the previous studies on regular earthquakes
obtained using some different methods [40, 41]. Here we
have confirmed the correlation using complex network based
approach, and more importantly, found correlations in tremors
and swarms.

Lastly, we wish to add a remark on catalogs on tremors. Since
a single event is not as distinct as regular earthquakes, there may
be some errors in the IET of tremors. To check the effect of such
errors in IET, we add a certain amount of noise to the IET data of
tremors and construct the visibility graph from these noisy data.
We find that the degree distribution is indeed robust to the noise:
it retains the power-law nature against the small noise in IET.

5. DETAILED STRUCTURE OF VISIBILITY
GRAPH

The detailed characterization of the topology of the network has
served to identify several non-trivial features exhibited by diverse
types of real-world systems including the basic principles that
played role in the network formation [1, 3, 4]. In order to extract
more properties hidden in the seismic records, the following
graph-theoretical quantities have been analyzed after obtaining
the visibility graph using “divide & conquer” algorithm.

Since our visibility graph is connected and undirected, there
always exists at least one path between any arbitrary pair of nodes
i and j through the links of intermediate nodes. The path with the
minimal links traversed is called the shortest path length dij, and
the average shortest path length is defined as,

l =
1

N(N − 1)

∑

i,j
i6=j

dij. (6)

In Figures 11A,B, we show the variation of l(N) with N on a
semilog scale for both the magnitude and IET series, respectively.
The best fit of the data by a straight line indicates its logarithmic
scaling and hence, the network is small-world. Although the data
for IET series of Shikoku has some curvature, the linear behavior

FIGURE 11 | The plots exhibit small-world behavior of the visibility graph for

(A) magnitude and (B) IET time series of Tohoku1 (black), Kumamoto (red),

Southern California (blue), Hakone (solid orange), Izu (solid violet), Cascadia

(magenta), and Shikoku (green). For visual clarity data of l(N) have been shifted

vertically. Multiplicative factors in the upper panel are 1, 1.05, 1.10, 1.15, 1.20,

1.25, and 1.30, respectively. In the lower panel [the labels are same as in (A)]

data for swarms have been shifted as y = y/1.5.

is quite apparent for large values of N. For IET series of swarms,
l(N) grows more slower than lnN.

Another important quantity associated with the network is the
clustering coefficient which measures the three point correlation
among the neighbors. Specifically, the clustering coefficient Ci of
node i measures the probability that the two neighbors of i are
connected. If there exists Ei links among the ki neighbors of node
i then, Ci = 2Ei/ki(ki − 1). In the case of ki < 2, Ci = 0. The
global clustering coefficient is expressed as,

C = 〈Ci〉 =
1

N

N
∑

i=1

2Ei

ki(ki − 1)
. (7)

By varying N from 29 to 216 we have observed that C is almost
independent of N (values differ only at 4-th decimal place)
for both magnitude and IET time series of different types of
earthquakes. Further, the clustering coefficient 〈C(k)〉 for the
nodes with degree k has been found to decay as 〈C(k)〉 ∼
k−ν with ν ≈ 1, as shown in Figure 12. This is the universal
feature of a hierarchical network observed in many real-world
networks [42]. The clustering coefficient C assumes its highest
value for the IET series of tremors.
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FIGURE 12 | The hierarchical nature of the visibility graph. The clustering

coefficient 〈C(k)〉 has been plotted with k on a log-log scale for the Tohoku1
(black) and Tohoku2 (red) magnitude time series (main panel), and for the IET

series of Shikoku (inset). The slopes of the fitted lines have been measured as

0.92(3), 0.89(3), and 1.01(2), respectively.

We have also calculated the Pearson correlation coefficient r
to investigate whether a high degree node tends to be linked with
a high degree node (assortative mixing, r > 0) or a low degree
node (disassortative mixing, r < 0). We have calculated r using
the following formula [43],

r =
L−1

∑

i k1ik2i − [L−1
∑

i
1
2 (k1i + k2i)]

2

L−1
∑

i
1
2 (k1i

2 + k2i
2)− [L−1

∑

i
1
2 (k1i + k2i)]2

, (8)

where, k1i and k2i are the degrees of nodes at the ends of link
i with i = 1, 2, · · · , L. We found that for all earthquake types,
the magnitude series shows assortative nature (last column of
Table 2). In contrast, in case of IET series we obtain a value of r ≈
0 for the regular earthquakes and for swarms and tremors r < 0
(last column of Table 3). Moreover, the graph associated with the
IET series of swarms has been found to be more disassortative
than that of tremors. This means that for swarms the high degree
nodes show more preference toward linking with the low degree
nodes. This indicates that the smaller heights are abundant in
both the time series, however, there are a few very large heights
(i.e., long quiescence periods) in the swarms series which are
even larger than the largest height in the tremor series. Therefore,
swarms are more intermittent than tremors.

For a detailed comparison of the characteristic differences
among the three different types of earthquakes, the above
quantities have been calculated for a fixed value of N = 212 and
the obtained values are listed inTables 2, 3 for the magnitude and
the IET series, respectively. Clearly, they can be distinguished by
the values of different graph-theoretical quantities obtained from
their individual IET series.

6. DISCUSSION

Finding and characterizing any correlations in the time series
of earthquake magnitude is a subject of great importance as it
may be useful in forecasting major earthquakes. However, to

date, existence of correlations is somewhat controversial and
has not been settled [40, 44–46]. For instance, it was reported
that regular earthquakes occurring close in space and time are
correlated in their magnitudes [44]. A counterargument was
given in [45] that these were pseudo correlations due to the
magnitude incompleteness and the modified Omori law. To shed
new light to this long-standing problem, we have made use of
the complex network theory and analyzed the visibility graph to
extract correlations in magnitude time series.

The previous studies [47, 48] in this context involve regular
earthquakes only. Here we extend the analysis to two other types
of earthquakes [49] to consider this problem in a more general
perspective. By using the method of visibility graph, we have
analyzed seismic time series in seven seismogenic zones including
the regular earthquakes in Southern California in common with
[48] but for more extended time period. The degree distribution
appears to be fitted with a stretched exponential function for all
the types of earthquakes analyzed here.

Visibility graphs are also constructed from shuffled catalogs
(Figure 5) or synthetic data drawn randomly from the GR
law (Figure 7). On average, the degree distribution appears
to be fitted with the stretched exponential function. However,
the Kolmogorov-Smirnov test rejects the null hypothesis that
these degree distributions are identical. Namely, the degree
distributions for these surrogate data are indeed distinguishable
from that of the original data. This means that the original series
have some special characters that are lost in their surrogates:
shuffled or synthetic catalogs.

Since the criterion for the visibility graph involves both
magnitude and IET, one might argue that the difference in the
degree distribution detected by the KS test is a mere by-product
resulting from the correlation in IET. To exclude this possibility,
we also perform the KS test by constructing the visibility graph
using the event index i instead of the occurrence time ti. We find
that the null hypothesis is again rejected. Namely, the magnitude
series (i,Mi) leads to slightly different degree distributions if they
are shuffled, although the difference is detectable only by the KS
test. Thus, the memory should exist in magnitudes alone.

The memoryless nature of earthquake magnitudes is a basic
assumption in the epidemic-type aftershock sequences (ETAS)
model, which is the most successful statistical model for
earthquake time series [50]. The results given here implies that
the memoryless assumption in earthquake magnitude is rather
approximate. Thus, if one wishes to improve statistical models
for earthquake occurrence, the correlation in magnitude should
be taken more seriously. To this end, the correlation found here
should be defined and quantified more clearly.

The degree distributions of stretched exponential form appear
to contradict some previous studies [47, 48], in which the power
law tails are concluded for themagnitudes of regular earthquakes.
In view of Equation (1), this may imply a fBm-like correlation
in the magnitude time series. Interestingly, however, they also
analyzed randomly shuffled sequences of magnitudes and did
not find any significant difference in the degree distributions.
This rather contradicts the existence of a fBm-like correlation.
Additionally, the degree distribution obtained in [47] spans
approximately one decade only, and the tails are noisy. Thus,
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TABLE 2 | Average values of the maximum degree kmax, average degree 〈k〉, clustering coefficient C, shortest path length l, and Pearson correlation coefficient r for the

visibility graph of the magnitude time series with N = 212.

Region kmax 〈k〉 C l r

Tohoku1 101 6.76 ± 0.07 0.770 ± 0.002 5.49 ± 0.03 0.118 ± 0.017

Tohoku2 82 6.36 ± 0.17 0.764 ± 0.004 5.66 ± 0.04 0.167 ± 0.029

Kumamoto 86 6.61 ± 0.11 0.769 ± 0.004 5.64 ± 0.03 0.128 ± 0.016

Southern California 94 6.58 ± 0.12 0.765 ± 0.004 5.64 ± 0.02 0.133 ± 0.020

Hakone 108 6.92 ± 0.19 0.766 ± 0.002 5.28 ± 0.02 0.118 ± 0.008

Izu 110 6.69 ± 0.13 0.762 ± 0.002 5.80 ± 0.02 0.125 ± 0.017

Cascadia 109 6.88 ± 0.18 0.751 ± 0.002 5.84 ± 0.03 0.158 ± 0.032

Shikoku 129 7.05 ± 0.12 0.759 ± 0.002 5.43 ± 0.02 0.092 ± 0.019

Synthetic Catalog 82 6.64 ± 0.05 0.780 ± 0.002 5.67 ± 0.02 0.122 ± 0.011

The synthetic catalog corresponds to the exponentially distributed heights with λ = 2.303(i.e., b = 1).

TABLE 3 | Average values of the maximum degree kmax, average degree 〈k〉, clustering coefficient C, shortest path length l, and Pearson correlation coefficient r for the

visibility graph of the inter-event time series with N = 212.

Region kmax 〈k〉 C l r γ

Tohoku1 435 8.52 ± 1.09 0.785 ± 0.003 4.99 ± 0.05 -0.008 ± 0.090 2.34 ± 0.05

Tohoku2 148 7.01 ± 0.35 0.782 ± 0.004 5.54 ± 0.03 0.097 ± 0.043 2.60 ± 0.08

Kumamoto 477 8.71 ± 3.35 0.780 ± 0.013 5.23 ± 0.09 0.021 ± 0.169 1.73 ± 0.08

Southern California 188 7.20 ± 0.49 0.784 ± 0.003 5.32 ± 0.03 0.071 ± 0.048 2.64 ± 0.05

Hakone 1750 17.06 ± 1.80 0.790 ± 0.015 3.24 ± 0.04 −0.211 ± 0.046 1.81 ± 0.09

Izu 1714 15.99 ± 2.74 0.796 ± 0.009 3.55 ± 0.03 −0.223 ± 0.068 1.79 ± 0.09

Cascadia 701 11.89 ± 1.30 0.816 ± 0.006 3.98 ± 0.04 −0.107 ± 0.028 2.51 ± 0.05

Shikoku 1185 13.78 ± 0.72 0.828 ± 0.006 3.45 ± 0.05 −0.162 ± 0.021 2.13 ± 0.05

The data for swarms and tremors show disassortative degree mixing. The last column represents the values of the degree distribution exponent γ obtained from the entire IET series.

one needs to be careful to draw a conclusion based on these
data alone. In [48], the tails of the degree distributions are less
noisy, but they appear to fall off from a power law at their
tails. Thus, their degree distributions might be fitted with a
stretched exponential function. However, the degree distribution
produced from Mexican catalog appears to develop a tail that
is still different from stretched exponential. We noticed that the
magnitude data in the Mexican catalog do not always obey the
GR law, and this may be the reason for the deviation from
the stretched exponential function. However, the Mexican data
require more careful and dedicated analyses to draw any decisive
conclusions on specific type of magnitude correlation.

We apply the visibility-graph analysis for the characterization
of the inter-event times (IET) between consecutive earthquakes.
Contrary to the magnitude time series, we find an evidence of
fBm-like correlations between the inter-event times. The network
associated with the IET series has a scale-free nature with the
exponents γ , which depends on the essential characteristics of
seismic activity. In the context of the f−β noise, the exponent γ is
directly related to β . These exponents may work as a generalized
and unified quantification of the intermittent nature of seismic
time series. For instance, we find that the IET series for swarms
are similar to superdiffusive Brownian motion, whereas those
for regular earthquakes correspond subdiffusion. However, the
interpretation of superdiffusive or subdiffusive nature in the

IET series is yet unclear from the mechanical point of view, and
should be pursued in the subsequent studies.

We have also analyzed the whole set of data using the
horizontal visibility graph algorithm. For both magnitude and
IET series, however, the degree distribution results in an
exponential distribution and no appreciable change has been
observed between these different data sets, making it harder
to draw any conclusive remarks on the distinction of different
time series.

7. CONCLUSION

In conclusion, we have investigated the correlations in the time
series of magnitudes and of inter-event times (IETs) for three
different categories of earthquakes in seven seismogenic zones
in the world. By applying the methods of visibility graph, we
show that the IET series possess correlations similar to fractional
Brownian motion, and that the three categories of earthquakes
have different exponents. While such an apparent correlation is
absent in the magnitude series, the Kolmogorov-Smirnov test on
the degree distribution reveals that the earthquake magnitudes
are not statistically equivalent to an uncorrelated (random or
shuffled) time series. This challenges a current popular belief
that magnitude time series are random. Since current major
statistical models for earthquake rate are based on this belief,
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these results provide us with useful constraints in developing
better statistical models.

Different temporal behaviors of three categories of
earthquakes are also reflected in various graph-theoretical
quantities. As found from the analysis of the assortativity
coefficient, the swarms are more intermittent than tremors.
More graph-theoretical techniques including horizontal visibility
graph [51], multiplex visibility graph [52], and recurrence
networks [11] would give new criteria for categorizing or
unifying different seismic activities. A novel approach for
forecasting time series based on visibility graph [53] might
find potential application for earthquakes. Our study therefore
shows with affirmation that the visibility graph algorithm has the
potentiality to capture the non-trivial complexity inherent in a
time series which is non-linear and non-stationary in nature.

One can also consider more elaborated methods for the graph
construction [54]. For instance, the visibility graph constructed
here is undirected and unweighted. Time directionality and
weighted links based on the inter-event distances would be
interesting subjects. Additionally, since the spatial information
of the seismic events has been disregarded here, the extension
of the visibility graph method to space-time may be a
promising attempt.

Together with the present results, such graph-theoretical
approaches would bring benefits to statistical modeling
of various types of seismic activities that cannot be

reproduced by the well-established ETAS model for
regular earthquakes.
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