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Desert roses are gypsum crystals that consist of intersecting disks. We determine their

geometrical structure using computer assisted tomography. By mapping the geometrical

structure onto a graph, the topology of the desert rose is analyzed and compared to a

model based on diffusion limited aggregation. By comparing the topology, we find that

the model gets a number of the features of the real desert rose right, whereas others do

not fit so well.
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1. Introduction

Fracture networks are of great importance in geophysical transport properties. In reservoirs, they
provide “highways” for fluid and gas transport. It is therefore surprising to discover that there are
no data available on the structure of such networks beyond the most rudimentary.

Hydraulic fracturing, the fracturing of rock—shale—formations due to the injection of fluids
at high pressure, is at the heart of a new process to extract petroleum and gas from shales. This
process has become so important that it has large impact on the world economy [1, 2]. Fracking, as
it is known, is also a highly controversial technique as the shales that are fractured often are close to
aquifers. The hydraulic fracturing may as a result of this proximity produce fractures that open up
for fluid transport into them. As the chemicals used in the hydraulic fracturing are toxic, this poses
a problem together with methane seepage [3, 4].

Surprisingly little is known about the hydraulic fracturing process. As with fracture systems
in reservoirs, the geometry and topology of fracture networks that are created is essentially
unknown. For example, is it a branched structure where the fractures are like leaves or is it
a structure consisting of intersecting fracture planes? One important reason for this lack of
knowledge is that no technique exists, acoustic or electromagnetic, that can visualize the fractures
in situ.

As fracture networks consist of intersecting fracture sheets, modern graph theory as it has been
developed over the last years, [5, 6], is not directly applicable. By transforming the fracture network
into an equivalent graph where the fractures are the nodes and their intersections are the links
between them as described in Andresen et al. [7] and Hope et al. [8], it is, however, possible to
analyze fracture networks within modern graph theory.

Hence, the theoretical tools are in place to analyze fracture networks, but real fracture systems
to test these tools on do not exist.

There is a mineral that is formed by a process that has some resemblance to hydraulic fracturing:
the desert rose, see Figure 1. Desert roses are formed in wet sand. They are evaporites where the
crystal formation has occurred as a result of inflow of water containing dissolved calcium sulfate
balanced by an outflow of water due to evaporation [9, 10]. Such minerals are used as indicators of
arid climates during the time they were formed.
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FIGURE 1 | A desert rose is an aggregate of disk shaped gypsum

crystals that have grown in water-saturated sand in desert areas. The

desert rose in the figure is the one we have analyzed. It measures

approximately 76 × 49 × 37 cm.

FIGURE 2 | Graph representation of the desert rose in Figure 1.

The gypsum crystals of desert roses contain grains of silica
sand [9]. Typically 50–70 % of the weight of a desert rose is
gypsum [11]. Analysis reveals a higher concentration of silicon
in the core of desert roses, compared to the peripheral parts,
suggesting that the disks grow from seeds of silicon [9].

The fact that desert roses are rarely encountered in the
holocene deposits [9] indicates a formation time longer than the
10,000 year age of the holocene deposits.

The kinship with hydraulic fracturing comes from the
following observations. In hydraulic fracturing the fracture
surfaces form equipotential surfaces for the injected fluid
pressure. This pressure generates stresses in the rock and as a
result, the fractures grow. One may view crystal growth in sand
as a fracture process. The sand grains are unconsolidated, but
are kept together by capillary forces due to the surrounding fluid
[12]. The formation and subsequent growth of a crystal creates
surfaces in the sand, and these surfaces are fracture surfaces as
they are surfaces created by breaking open contacts between the

sand grains. The difference to the hydraulic fracturing process,
however, lies in the different boundary conditions at the fracture
surfaces; whereas the pressure is given at the fracture surfaces in
the hydraulic fracture process, it is the deformationwhich is given
at the fracture surfaces in the desert rose formation process.

The difference in the boundary conditions at the fracture
surfaces between the two processes results in the shapes of the
fractures being different. However, it is not possible to compare
the branching of the fractures in the two processes, i.e., the
creation of new fractures different from the old ones. To our
knowledge, the details of the branching occurring in hydraulic
fracture have not been studied systematically. In computational
studies based on a discrete element method [13], branching
is caused by local strength variations in the material that is
fracturing and proceeds by tip splitting. However, the medium
was in this case two-dimensional, and it is not known whether
this would be the dominating process in three dimensions. The
alternative to tip splitting is that new fractures nucleate on the
surface of existing fractures. In the desert rose growth process,
nucleation of new crystals on the surface of existing crystals is the
dominating mechanism [9].

The geometry and topology of desert roses are interesting in
their own right and not only as a proxy for hydraulic fracturing.
The complex desert rose shape is not the only way that gypsum
crystallizes. Depending on the conditions under which this
happens, the kind of crystalline structure which is found will
reflect this and, hence, act as an indicator of these conditions at
the time the crystals were formed [10]. It is therefore important
to understand the precise mechanism that leads to the desert rose
shape.

In the present study, we have identified the geometrical
structure of a desert rose, see Figure 1, by using medical
computer assisted tomographic (CT) scanning. Using themethod
described in Andresen et al. [7] for two-dimensional fracture
networks and in Hope et al. [8] for three-dimensional fracture
networks, we have mapped the geometrical structure onto a
graph which we then have analyzed using the tools of modern
graph (network) theory [5, 6]. We show the graph based on the
desert rose of Figure 1 in Figure 2.

We have then constructed a stochastic growth model for the
evolution of desert roses based on new crystals forming on the
existing ones through a nucleation process. By mapping the
ensuing computer-generated structure onto the graph as for the
scanned desert roses, we are able to compare the model with the
real structure quantitatively. We are therefore able to judge how
well the model reproduces the real structure.

We note how this program has some similarities with the
introduction of fractals in the eighties [14]. This concept made it
possible to characterize complex landscapes quantitatively and as
a consequence, be able to construct stochastic models that would
be of such quality that they could be used by the motion picture
industry [15]. We note that whereas the measurement of fractal
dimensions requires large structures over many length scales, the
measurement of graph properties do not require large structures.

In the next section, we describe our use of a medical CT
scanner for recording the structure of the desert rose seen in
Figure 1. We then go on to present our stochastic model for
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FIGURE 3 | Three distinct disks are shown in (A) while (B) shows how

the three disks are found to be connected in a later frame.

the formation and growth of desert roses in Section 3. Section
4 presents the graph theoretical analysis of both the scanned
desert rose and of the stochastically generated desert roses from
our model and in Section 5 we present the results. We end by
presenting our conclusions.

2. Computer Assisted Tomographic
Scanning and Analysis of a Desert Rose

The basis for our analysis is the desert rose fromMorocco, shown
in Figure 1. It measures approximately 76× 49× 37 cm.

Using a medical CT scanner we register cross-sections of
the desert rose. For each cross-section the different disks and
their connections are identified. By following the different disks
through all cross-sections in which they appear, a full mapping
of all disks and their connections is obtained. The process of
following disks through several cross-sections to determine if
they are connected is illustrated in Figure 3.

The process is done manually and we do not rule out the
possibility of errors both in interpreting the images and in the
registration process. Especially in the case of the smallest disks
which are grouped together on larger disks, as seen on disks in the
center of Figure 1, it is likely that not all of these disks have been
registered. Larger disks are all registered, but there may be some
uncertainties about their connections. This is the case in areas
where several disks grow together, which may make it difficult to
determine the extent of the different disks.

Once the disks have been identified, the structure is mapped
onto a graph [7, 8]. This is done by identifying each disk as a node
and placing a link between disks (nodes) that intersect each other.
The ensuing nodes-and-links structure is the graph which is
analyzed. We identified 402 disks and 679 intersections between
different disks, giving rise to the graph shown in Figure 2.

3. Stochastic Desert Rose Model

In this section, we describe our model for desert rose growth.
From visual inspection of the desert roses, we note that although
the disks are compact, the structure as a whole is not and that
there is not much variance in the size of the disks it consists of.
Roughly, the variance is of the order of a magnitude.

The fact that the disks do not vary much in size wherever
they are situated in the structure indicates that the growth of

the disks is slow enough so that gradients in the calcium sulfate
concentration outside the disks is not important. On the other
hand, the number of disks is of the order of a few hundred and
they form an open structure. This indicates that disk nucleation
is a rare event. One may then think of two possible scenarios:
the first scenario would be that the structures on which the disks
nucleate are already in place in the sand. The disks would then
grow from each nucleus and then merge into the desert rose
structure. This scenario does, however, not explain why there
is such a great variance in the sizes of the desert roses that are
found. The second scenario is that the structures on which the
disks nucleate also diffuse, but with a very low concentration.
The nucleation of new disks would then be a diffusion-limited
aggregation process (DLA) which creates open (even fractal)
structures. Hence, we base our model on the DLA model of
Witten and Sanders [16].

Particles on which the disks will eventually nucleate execute
diffusive motion, i.e., perform random walks, starting from far
enough distances from the growing aggregate. Once a particle
is within the close proximity of the desert rose, it lands on the
growing structure in the form of a two-dimensional circular disk
of variable radius R. Each disk is placed such that its center lies on
a previously placed disk and its orientation is selected randomly
with uniform probability.

In order to model the disks having some variation on their
radii, they are drawn from a power law probability distribution
p(R) ∼ R−1. To implement this procedure, uniformly distributed
random numbers xi within −1 < xi < 1 are generated and the
radii Ri = 10βxi are assigned. Consequently, the distribution of
radii assumes p(R) ∼ R−1 form within the range 10−β to 10β .

When β = 0, all radii are equal. With β = 0.8, the ratio
between the largest and the smallest disk will be of the order of
40 and with β = 1.2, the ratio is around 250. Hence, we will be
able to investigate the influence of the disk size distribution on
the ensuing disk structure.

The first disk with radius R1 is placed on the xy-plane with
center at the origin. At an arbitrary stage, let there be n disks
in the cluster. To add the next (n + 1)th disk, a random walker
is released on the surface of an imaginary sphere with its center
at the origin, whose radius is sufficiently large to encompass the
entire desert rose. It is then allowed to perform a random walk
in three-dimensional space. A “sphere of influence” of radius R
is imagined to be associated with every disk in the desert rose.
When the incoming diffusive particle penetrates such a sphere,
it is stopped instantly, and this particular disk is selected. The
center of the (n + 1)th disk with radius Rn+1 is then placed
at a randomly selected point on the surface of this disk and is
assigned a random orientation in space. The precise value of Rn+1

is drawn from the probability distribution p(R). Occasionally, it
may happen that the random walker enters within the common
space of intersection of more than one sphere; in that case we
select a disk randomly among them and place the new disk on its
surface.

Crystal “growth” is executed in the following way: Once a disk
in the growing desert rose is chosen, a randompoint is selected on

that disk with coordinates [x
(n+1)
c , y

(n+1)
c , z

(n+1)
c ] and the center

of the (n + 1)th disk is placed at this point. Next, the new disk
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is given a random orientation by choosing three Euler angles
(φ, θ, ψ) randomly. The sequence of rotations is the following:

(i) The first rotation is by an angle φ in the range [0, 2π] about
the z−axis,

(ii) the second rotation is by an angle θ in the range [0, π] about
the new x− axis, and

(iii) the third rotation is by an angleψ in the range [0, 2π] about
the new z−axis.

If the three rotation matrices corresponding to the three Euler
angles be denoted by D,C, and B, respectively, then the general
rotation is given by A = BCD. Therefore, each disk is
characterized by its center coordinates (xc, yc, zc), three Euler
angles (φ, θ, ψ), and the radius (R). We note that the direction
cosines (a, b, c) of the normal to the plane of the disk are obtained
by the elements of the third column of the rotation matrix A.

From the network a graph is constructed by representing disks
as nodes and linking nodes representing connected disks.

There exists a connection between any two disks if they
intersect each other. Whether two disks i and j have an
intersection or not can be detected by checking the following two
conditions:

1. |Ci−Cj| ≤ (Ri+Rj), where Ci and Cj are the centers of the disk
i and j, respectively. This means that the distance between the
center of the two disks must be less than or equal to the sum
of their individual radii.

2. Di ≤ Ri and Dj ≤ Rj, where Di is the perpendicular distance
from the line of intersection of the two planes containing the
disks to the center of disk i and Dj is that of disk j.

If both conditions are satisfied simultaneously then there is an
intersection between the two disks. If one or both conditions are
not met, there is no intersection between the two disks.

4. Network Analysis

The following gives a brief presentation of how the networks are
analyzed, based on Hope et al. [8].

By transforming the desert rose structure into a graph
representation, they can be analyzed usingmethods frommodern
network science. The transform used, was introduced for fracture
networks by Andresen et al. [7], and applied to three-dimensional
fracture networks by Hope et al. [8]. As shown in Figure 4, each
disk is defined as a node and nodes are linked if they represent
intersecting disks.

The properties of a given network are useful to compare
against a random version of the same network [6]. For such a
comparison, a fully randommodel [17] with the same number of
nodes and links is used.

A measure of the local connectivity of a network is the
clustering coefficient. The coefficient Ci gives the ratio between
the number of connections between the ki neighbors of node i
and the ki(ki−1)/2 possible ways they could be connected [5, 18].
In the case where ki < 2, Ci = 0 [19].

A global network coefficient, C, is defined as the average of all
local clustering coefficients, giving

FIGURE 4 | Illustration of how the structure of the desert rose is

transformed into a graph by defining each disk as a node and linking

nodes which represent intersecting disks. (A) Representation of a small

desert rose made up by six disks. (B) Equivalent graph representation where

the color of the nodes correspond to the color of the disks they represent.

C =
1

N

N∑

i= 1

Ci =
1

N

N∑

i= 1

2Ki

ki(ki − 1)
. (1)

where N is the number of nodes in the network and Ki is the
number of connections between node i’s neighbors [5].

A measure of the long range connectivity of the network is
the characteristic path length, L. Based on the shortest path, dij,
between nodes i and j, i.e., the path with the fewest links traversed,
the characteristic path length can be defined as [18, 20]

L =
1

N(N − 1)

∑

(i,j)∈N, i 6= j

dij. (2)

A measure of the degree mixing is the assortativity coefficient r
[21]. The coefficient can be expressed as follows

r =
M−1

∑
i k1ik2i − [M−1

∑
i
1
2 (k1i + k2i)]

2

M−1
∑

i
1
2 (k1i

2
+ k2i

2)− [M−1
∑

i
1
2 (k1i + k2i)]2

, (3)

where k1i and k2i are the degrees of the nodes linked by the ith
link and M is the number of links [21]. Assortative mixing is
indicated by r > 0, while r < 0 indicate dissasortative mixing.

The variance of the assortative coefficient for a single sample
can be found by the jackknife estimate

σ 2
j =

M − 1

M

M∑

i= 1

[ri − r]2 , (4)

where ri is the assortative coefficient calculated while excluding
the ith link [19, 22].

5. Results and Discussion

The graph properties of the desert rose are shown in Table 1.
The clustering coefficient is an order of magnitude larger for the
desert rose than for the random graph, while the characteristic
path length is similar to that of the random graph, indicating a
small-world network [18].

Frontiers in Physics | www.frontiersin.org 4 September 2015 | Volume 3 | Article 72

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Hope et al. Network topology of the desert rose

TABLE 1 | Average values of the number of nodes, links, maximum degree kmax, average degree 〈k〉, clustering coefficient C, clustering coefficient for

random networks CRA, characteristic path length L, characteristic path length for random networks LRA, assortativity coefficient r with its standard

deviation σ r for the desert rose and the desert rose model with four values of the parameter β.

Network Nodes Links kmax 〈k〉 C CRA L LRA r σr

Desert rose 402 679 25 3.38 0.23 0.008 5.62 5.21 −0.29 0.027

β = 0.0 402 4811 57 23.9 0.55 0.060 3.79 2.17 0.53 0.074

β = 0.8 402 2280 86 11.3 0.60 0.028 3.29 2.75 −0.11 0.051

β = 1.0 402 1878 87 9.35 0.54 0.023 3.31 2.95 −0.18 0.048

β = 1.2 402 1592 89 7.92 0.47 0.019 3.32 3.15 −0.24 0.046

Results for the models are based on at least 10,000 samples and σr is calculated from the variance in r for the different samples. For the desert rose σr is calculated using the jackknife

method in Equation (4).

FIGURE 5 | (A) Average degree 〈k〉 as a function of disk radius, R for β = 1.0.

(B) The same plot in log-linear scale. The straight line is exp(0.2R).

The desert rose has an assortativity coefficient of −0.29. As
such the graph shows dissasortative degree mixing, which is
typical of both technological and biological networks [19].

In the case of desert rose model, the assortativity coefficient is
positive when all the disks have unit radii. This is in contrast to
the network behavior of the real desert rose. When the width of
the distribution of radii p(R) is increased, a change is observed
in the degree mixing. For β = 0.8, 1.0, and 1.2 the assortativity
coefficient is found to be negative as shown in Table 1.

Previous studies of two-dimensional fracture networks have
shown a strong connection between fracture size and the degree
of the corresponding node [8, 23]. This follows from the chance
of connecting with other fractures increases with the size of

FIGURE 6 | Assortativity coefficient as function of β. The straight line is

0.305− 0.537β, leading to r(β) = 0 for β = 0.57.

the fractures. We see the same effect here in Figure 5. Here
we plot the average degree 〈k〉 as a function of disk radius, R.
Asymptotically, the data are consistent with 〈k〉 ∼ exp(0.2R)
for β = 1.0. The reason for this behavior is the following: our
model is based on the DLA process and it is assumed that each
disk in the cluster has a “sphere of influence” of the same radius
as the disk itself. When the incoming diffusive particle penetrates
such a sphere, it selects that disk as nucleation site. This creates
a new node in the graph with a link to the disk that was chosen
as a nucleation site. As the probability of a particle to enter the
“sphere of influence” of a given disk increases with the radius
of the disk, so does the probability that a link is formed to the
node that represents that particular disk in the graph.We observe
visually that the same holds true for the disks in the desert rose
model—the larger they are, the more likely they are to connect
with other disks. Using a single size for all disks is likely to result
in many disks connecting to the same number of other disks. For
such a network, it is not surprising that nodes tend to link to other
nodes with similar degree.

The assortativity coefficient of the model changes sign from
positive to negative for β as β is increased. We show this in
Figure 6. The data points follow closely the fit r(β) = 0.305 −

0.537β leading to r(β) = 0 for β = 0.57. We expect the
assortativity coefficient to decrease with increasing β for the
following reason. With increasing β , the largest disks become
even larger. At the same time, the number of small disks is much
larger than the number of large disks due to the character of the
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FIGURE 7 | Log–log plot of the degree distribution for the real desert

rose sample. A power law p(k) ∼ k−α with α = 2.0 has been added as a

guide to the eye.

radius distribution that we use. We have just argued that the
larger the disk, the higher the coordination mumber is for its
equivalent node in the graph. This means that these disks must
connect to disks of smaller radius and hence smaller coordination
number. This drives the assortativity coefficient down.

A noteworthy simplification in the desert rose model is
that the disks are free to grow through other disks. Studies
of models generating two-dimensional fracture network models
have shown that whether or not fractures act as barriers for other
fractures play an important part in whether the resulting graphs
show assortative or disassortative degree mixing [8, 23]. Similarly
for models generating three-dimensional fracture networks, the
ability of fractures to limit the growth of other fractures has been
found to have an impact on the degree mixing. However, in this
case the models are found to be disassortative, but the strength of
the disassortativemixing is weaker if the fractures are free to cross
each other [8]. In the case of the desert rose model, the degree
mixing is controlled by the range of the size distribution, and for
a sufficient range the model results in disassortative mixing with
strength similar to that of the real sample.

The desert rose networks reconstructed from the CT scans
also exhibit a broad degree distribution as shown in Figure 7.
Whether it follows a power law or not cannot, however, be
concluded from the data. We studied it for different values of
β from 0 to 1.2 by increments of 0.1 in our model. The degree
distribution is observed to be broad for β = 0.8 and larger. In
Figure 8 the degree distribution is shown in log–log scale for four
different sizes with β = 1.0. Since the growth model is based
on the DLA process, the disks experience a screening effect and
thus the disks deep interior to the desert rose are not selected any
more as the nucleation site. This results in their degree to remain
constant after placing certain number of disks in the system and
therefore data collapse is not observed.

With respect to the relationship between characteristic path
length and system size, Figure 9 shows how L scales linearly when
plotted against the ratio ln(N)/ ln(〈k〉(N)). This is characteristic
of the small-world effect [6].

The nature of the graph from the model is in correspondence
with the real desert rose graph in terms of the degree distribution

FIGURE 8 | Log–log plot of degree distribution when the radii of the

disks are power law distributed with β = 1.0 for four values of number

of disks N = 128,256, 512, and 1024 with N increasing from left to right.

The initial slope, in all four cases, is compatible with a power law, p(k) ∼ k−α ,

where α ≃ 1.22.

FIGURE 9 | Average path length plotted against ln(N)/ ln(〈k〉(N)) with

best linear fit illustrated for β = 1.0. This indicates the presence of the

small-world effect.

and degree mixing within a particular range of β . The value of
the clustering coefficient is much higher and characteristic path
length obtained from the model is lower than that of real desert
rose indicating a much denser and highly connected graph. This
is probably because the disks are allowed to penetrate through
other disks, which is not seen in case of the real desert rose.

6. Conclusion

The topology of the desert rose is studied by first scanning it
using a CT scanner. By representing the disks as nodes and their
intersections as links, we have constructed a graph representation
of the crystal.

Based on what is known about the geological processes that
lead to the formation of desert roses, we have constructed a
DLA-type model where new disks are grown from nucleation
sites on existing disks when reached by a random walker.

By comparing the topology, we find that the model gets some
features of the real desert rose right, whereas others do not fit
so well. In particular, it is found that when all disks are of the
same size, the model shows assortative degree mixing whereas
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the desert rose shows disassortative degree mixing. When the
variation of the disk radii is increased, the graphs from the
model change character and shows dissasortative degree mixing,
as in the real system. The degree distribution shows a broad
distribution in the desert rose, whereas it is only broad for wider
distributions of disk radii. The desert rose shows a rather narrow
distribution of disk sizes; typically over an order or magnitude
or so. Both the real system and the model show a small-world
structure.

We alluded in the introduction to using the desert rose system
as a proxy for fracture networks produced through hydraulic
fracturing. Hydraulic fracturing is of increasing importance, and
it is becoming urgent that the resulting fracture networks are
fully understood. This paper shows that relatively small systems
yield precise topological information making it possible to judge
quantitatively the quality of different models.
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